Research Article: Exploiting the inter-strain divergence of Fusarium oxysporum for microbial bioprocessing of lignocellulose to bioethanol

Date Published: March 15, 2012

Publisher: Springer

Author(s): Shahin S Ali, Mojibur Khan, Brian Fagan, Ewen Mullins, Fiona M Doohan.


Microbial bioprocessing of lignocellulose to bioethanol still poses challenges in terms of substrate catabolism. A targeted evolution-based study was undertaken to determine if inter-strain microbial variability could be exploited for bioprocessing of lignocellulose to bioethanol. The microorganism studied was Fusarium oxysporum because of its capacity to both saccharify and ferment lignocellulose. Strains of F. oxysporum were isolated and assessed for their genetic variability. Using optimised solid-state straw culture conditions, experiments were conducted that compared fungal strains in terms of their growth, enzyme activities (cellulases, xylanase and alcohol dehydrogenase) and yield of bioethanol and the undesirable by-products acetic acid and xylitol. Significant inter-strain divergence was recorded in regards to the capacity of studied F. oxysporum strains to produce alcohol from untreated straw. No correlation was observed between bioethanol synthesis and either the biomass production or microbial enzyme activity. A strong correlation was observed between both acetic acid and xylitol production and bioethanol yield. The level of diversity recorded in the alcohol production capacity among closely-related microorganism means that a targeted screening of populations of selected microbial species could greatly improve bioprocessing yields, in terms of providing both new host strains and candidate genes for the bioethanol industry.

Partial Text

Although much progress has been made in developing and optimising the many areas of biomass biorefining (Tian et al. 2010), the efficient production of bioethanol fuel from lignocellulosic biomass remains an obstinate challenge. Conventionally, it involves the thermo-chemical hydrolysis of hemicellulose, followed by enzymatic hydrolysis of cellulose and yeast-based fermentation of the resulting sugars. Alternatively, some microbes can enzymatically hydrolyse cellulose and hemicellulose to sugars and then ferment the released hexose and pentose sugars (glucose, mannose, galactose, xylose and arabinose), in a process called consolidated bioprocessing (CBP) (Lynd et al. 2005). The bottleneck with regard to CBP is the scarcity of suitable microorganisms that exhibit high-end efficiency with regard to both substrate utilisation and product formation. Much research is focussed on finding and designing such organisms, driven by the significant reductions in both capital and operational cost that they will bring to lignocellulose bioprocessing. In parallel, finding a way to reduce by-product accumulation such as xylitol, acetaldehyde, glycerol, formic, lactic, and acetic acids is also a major focus area of lignocellulosic bioethanol research.

One of the major factors affecting the ability of F. oxysporum to produce bioethanol from straw is the degree of straw delignification (Christakopoulos et al. 1991a). It should be noted that this study differs from many others in that the focus was on the ability of strains of the fungus F. oxysporum to release bioethanol from unprocessed wheat straw. The performance of filamentous fungi in lignocellulosic bioconversion is affected by various culture conditions (Singh et al. 1992) and thus we set out to determine the optimal conditions for F. oxysporum-mediated bioconversion of non-alkali-treated straw to bioethanol. As reported earlier by Christakopoulos et al. (1991a), a combination of aerobic and non-aerobic growth phases is necessary for the F. oxysporum-mediated biodegradation of straw and fermentation of the resulting sugars to bioethanol. Previous studies suggested that the source of nitrogen in the minimal media plays an important role in the both the production of cellulase by Clostridium thermocellum (Garcia-Martinez et al. 1980) and anaerobic growth and product formation by S. cerevisiae (Albers et al. 1996). Thus the effect of medium on bioethanol yields observed in this study may have been due to different nitrogen sources.

The authors declare that they have no competing interests.




Leave a Reply

Your email address will not be published.