Research Article: Genetic Basis of a Cognitive Complexity Metric

Date Published: April 10, 2015

Publisher: Public Library of Science

Author(s): Narelle K. Hansell, Graeme S. Halford, Glenda Andrews, David H. K. Shum, Sarah E. Harris, Gail Davies, Sanja Franic, Andrea Christoforou, Brendan Zietsch, Jodie Painter, Sarah E. Medland, Erik A. Ehli, Gareth E. Davies, Vidar M. Steen, Astri J. Lundervold, Ivar Reinvang, Grant W. Montgomery, Thomas Espeseth, Hilleke E. Hulshoff Pol, John M. Starr, Nicholas G. Martin, Stephanie Le Hellard, Dorret I. Boomsma, Ian J. Deary, Margaret J. Wright, Ali Torkamani.


Relational complexity (RC) is a metric reflecting capacity limitation in relational processing. It plays a crucial role in higher cognitive processes and is an endophenotype for several disorders. However, the genetic underpinnings of complex relational processing have not been investigated. Using the classical twin model, we estimated the heritability of RC and genetic overlap with intelligence (IQ), reasoning, and working memory in a twin and sibling sample aged 15-29 years (N = 787). Further, in an exploratory search for genetic loci contributing to RC, we examined associated genetic markers and genes in our Discovery sample and selected loci for replication in four independent samples (ALSPAC, LBC1936, NTR, NCNG), followed by meta-analysis (N>6500) at the single marker level. Twin modelling showed RC is highly heritable (67%), has considerable genetic overlap with IQ (59%), and is a major component of genetic covariation between reasoning and working memory (72%). At the molecular level, we found preliminary support for four single-marker loci (one in the gene DGKB), and at a gene-based level for the NPS gene, having influence on cognition. These results indicate that genetic sources influencing relational processing are a key component of the genetic architecture of broader cognitive abilities. Further, they suggest a genetic cascade, whereby genetic factors influencing capacity limitation in relational processing have a flow-on effect to more complex cognitive traits, including reasoning and working memory, and ultimately, IQ.

Partial Text

Relational processing is defined as the ability to mentally link variables relevant for goal-directed behaviour, and is thought to underlie a diverse range of higher-order cognitive abilities including reasoning, categorisation, planning, quantification, and language [1–12]. One characteristic of relational processing is that it is effortful. It imposes a load on limited cognitive resources and this load increases with the complexity of the relations. Relational complexity (RC) theory [13] quantifies complexity in terms of the RC metric. This metric is domain-general, underlying tasks as divergent as sentence comprehension (understanding multiple “who did what” relations (Fig 1)) and transitive inference (whereby A>C can be inferred from the two relations, A>B and B>C)[14]. The capacity to process complex relational information in order to solve a problem increases from childhood through to young adulthood (most 2 year-olds can process relations between two entities/variables, which increases to three entities/variables for the majority of 5 year-olds, while the relational processing limit for young adults corresponds to four entities related in a single decision [14–16]). This limit on relational processing represents the number of unique entities, or conceptual chunks of information, that can be processed in parallel to arrive at a solution and is proposed to underlie capacity limitations in reasoning (as has been shown for the knight-knave task of suppositional reasoning [16, 17]). Further, it is comparable to the working memory capacity limit of four elements [18]. Indeed, capacity limits in both reasoning and working memory might be based on the limited ability to process complex relational information, which could account for the link found between these traits [19].

This is the first study to examine the extent of genetic influence on the ability to process complex relational information. Relational processing is known to impose processing loads that increase with the complexity of relational information [14, 15, 57]. Furthermore, individual differences in this ability have been demonstrated [15, 57]. Here, the role of processing complex relations (i.e. RC) is explored as a core component of cognitive function, as a foundation for both reasoning and working memory [1, 19], and as a potentially important endophenotype for psychiatric and neurological disorders [27, 28, 30]. First we show that RC is strongly heritable (i.e., genetic sources account for 67% of individual variability). This heritability estimate is similar to that found here for reasoning and working memory domains (Fig 3) and in other studies for higher-order cognitive functions [58]. Consistent with prior work [1, 19, 57], RC accounted for a substantial amount of the variance in IQ and the majority of covariation between reasoning and working memory. Here we show that these relationships are driven almost entirely by overlapping genetic influences. Further, in exploratory analyses, we searched for common genetic variants that influence RC, with meta-analyses providing suggestive support for four loci.

We find relational processing to be reliable and heritable, and consistent with RC theory [1, 19], capacity limitations for processing complex relations appear to make a substantial contribution to general cognitive ability and to underlie much of the covariation found between reasoning and working memory. Importantly, overlapping genetic sources drive these associations, and as such, genetic factors related to relational processing are identified as an important component of the genetic architecture underlying intelligence. Further, the results are consistent with a genetic cascade effect whereby genetic factors influencing core cognitive traits have flow-on effects to more complex cognitive behaviours. Potentially, genetic sources influencing structural and functional aspects of the prefrontal cortex, a brain region associated with relational processing [12, 20, 21], may be an earlier step in this genetic cascade. Future studies can assess these relationships by including brain imaging measures of prefrontal cortex structure and function in multivariate models similar to those found in the current study and in models examining direction of causation.




Leave a Reply

Your email address will not be published.