Research Article: Glutathione peroxidase (GPX) activity in blood of ewes on farms in different scrapie categories in Iceland

Date Published: June 23, 2008

Publisher: BioMed Central

Author(s): Kristín B Gudmundsdóttir, Jakob Kristinsson, Sigurdur Sigurdarson, Tryggvi Eiríksson, Torkell Jóhannesson.


Preliminary studies indicated decreased glutathione peroxidase (GPX) activity in blood of ewes on scrapie-afflicted farms. Other studies have shown decreased GPX activity in brain of prion-infected mice and in prion-infected cells in vitro. The aim of this study was to examine the GPX activity in blood as well as the distribution of GPX-activity levels from ewes on farms in scrapie-afflicted areas in Iceland.

Blood samples were collected from 635 ewes (non-pregnant [n = 297] and pregnant [n = 338]) on 40 farms in scrapie-afflicted areas during the years 2001–2005, for analysis of GPX activity. The farms were divided into three categories: 1. Scrapie-free farms (n = 14); 2. Scrapie-prone farms (earlier scrapie-afflicted, restocked farms) (n = 12); 3. Scrapie-afflicted farms (n = 14). For comparison, 121 blood samples were also collected from non-pregnant ewes on one farm (farm A) in a scrapie-free area (scrapie never registered). Chi-square test was used to test for normal distribution of GPX-results, and Kruskal-Wallis test to compare GPX-results between categories.

The GPX-results appeared to be biphasically distributed in ewes in all three scrapie categories and on farm A. The presumptive breaking point was about 300 units g Hb-1. About 30–50% of the GPX-results from ewes in all three scrapie categories were below 300 units g Hb-1 but only about 13% of the GPX-results from ewes on farm A. The mean GPX activity was highest on farm A, and was significantly lower on scrapie-prone farms than on scrapie-free or scrapie-afflicted farms (non-pregnant and pregnant ewes: P < 0.005, respectively; non-pregnant and pregnant ewes combined: P < 0.0005). 1) the distribution of GPX-results in blood of Icelandic ewes apparently has a biphasic character; 2) the GPX-results were higher in ewes on one farm in a scrapie-free area than in ewes on farms in the scrapie-afflicted areas; 3) GPX-activity levels were significantly lowest on earlier scrapie-afflicted, restocked farms, which might have a bearing on the recurrence of sporadic scrapie on these farms; 4) further study on the possible role of GPX activity in the occurrence of scrapie in Iceland is warranted.

Partial Text

At least four forms of glutathione peroxidases (GPXs), containing selenocysteine as an active site, are found in the mammalian body. The best known of these is generally referred to as GPX-1 [1]. The activity of this isoenzyme has especially been studied in the blood of domestic animals (sheep, cattle, horses) and its activity may, with certain reservations, be taken as an indication of the selenium levels in the blood of the animals [2,3]. In the blood of sheep (and some other animals) more than 80% of the enzymic activity is confined to the cell membrane of the erythrocytes, but some activity can also be found in plasma [4]. In this text the acronym GPX (singular) is used to denote the GPX-1 form of the enzyme in the blood of sheep.

The results are summarized in Figures 2, 3, 4, 5 and Table 2.

It should be noted that the term “scrapie-prone” as used in this text refers especially to the fact that in recent years many cases of scrapie have been observed sporadically on casual farms where scrapie had been diagnosed previously, the flocks culled and the farms subsequently restocked with healthy sheep in accordance with government rules. It should also be noted that information on the occurrence of scrapie is in general fragmentary before 1960 and that systematic, preventive measures against scrapie (including the culling of flocks, quarantine periods etc.) were first legally enforced just prior to 1980. Thus these two years have been used as cut-out times in this study (cf. Materials and methods).

All authors contributed equally to the research. All authors read and approved the final manuscript.




Leave a Reply

Your email address will not be published.