Research Article: Higher fish but lower micronutrient intakes: Temporal changes in fish consumption from capture fisheries and aquaculture in Bangladesh

Date Published: April 6, 2017

Publisher: Public Library of Science

Author(s): Jessica R. Bogard, Sami Farook, Geoffrey C. Marks, Jillian Waid, Ben Belton, Masum Ali, Kazi Toufique, Abdulla Mamun, Shakuntala H. Thilsted, Fakir M. Amirul Islam.

http://doi.org/10.1371/journal.pone.0175098

Abstract

Malnutrition is one of the biggest challenges of the 21st century, with one in three people in the world malnourished, combined with poor diets being the leading cause of the global burden of disease. Fish is an under-recognised and undervalued source of micronutrients, which could play a more significant role in addressing this global challenge. With rising pressures on capture fisheries, demand is increasingly being met from aquaculture. However, aquaculture systems are designed to maximise productivity, with little consideration for nutritional quality of fish produced. A global shift away from diverse capture species towards consumption of few farmed species, has implications for diet quality that are yet to be fully explored. Bangladesh provides a useful case study of this transition, as fish is the most important animal-source food in diets, and is increasingly supplied from aquaculture. We conducted a temporal analysis of fish consumption and nutrient intakes from fish in Bangladesh, using nationally representative household expenditure surveys from 1991, 2000 and 2010 (n = 25,425 households), combined with detailed species-level nutrient composition data. Fish consumption increased by 30% from 1991–2010. Consumption of non-farmed species declined by 33% over this period, compensated (in terms of quantity) by large increases in consumption of farmed species. Despite increased total fish consumption, there were significant decreases in iron and calcium intakes from fish (P<0.01); and no significant change in intakes of zinc, vitamin A and vitamin B12 from fish, reflecting lower overall nutritional quality of fish available for consumption over time. Our results challenge the conventional narrative that increases in food supply lead to improvements in diet and nutrition. As aquaculture becomes an increasingly important food source, it must embrace a nutrition-sensitive approach, moving beyond maximising productivity to also consider nutritional quality. Doing so will optimise the complementary role that aquaculture and capture fisheries play in improving nutrition and health.

Partial Text

Malnutrition and poor diet are the leading causes of the global burden of disease, with nearly 800 million people suffering from hunger and two billion people suffering from micronutrient deficiencies [1]. Undernutrition alone accounts for 45% of all child deaths, and prevents millions from reaching their developmental potential, with profound social and economic impacts [2]. The immensity and urgency of this global challenge is reflected in the Unites Nations Sustainable Development Goals (SDGs), with goal two specifically aiming to end all forms of malnutrition [1].

Fish consumption has significantly increased from 1991 to 2010; rapid growth in aquaculture has more than compensated, in terms of quantity, for a decline in availability of fish from capture fisheries. This is broadly consistent with increased fish production figures over this period [36], and the general socio-demographic trend with households moving out of poverty, and consumption of higher market value foods (including ASFs) increasing.

The valuable role of aquaculture in Bangladesh in securing the availability and affordability of fish is unquestionable. If growth in this sector had not occurred, declines in nutrient intakes described here would undoubtedly be much more severe, with far more serious implications for nutrition and health. However, the results presented here highlight unintended negative consequences of policy decisions and agricultural investments which are narrowly focused on maximising production and productivity. In doing so, our results challenge the dominant rhetoric that increases in food supply automatically lead to improvements in diet and nutrition. These findings are of significance to many countries experiencing rapid growth in aquaculture alongside declining quantity and diversity of species from capture fisheries. In this light, whilst the findings are specific to Bangladesh, it is possible that this decline of nutritional quality linked to a shift towards greater farmed fish consumption, is occurring on a global scale. As aquaculture becomes an increasingly important food source for many, it must embrace a nutrition-sensitive approach, by considering how changes in food supply affect nutritional quality of diets. To do so requires greater knowledge of the nutritional value of indigenous foods at species/varietal level, and the contributions these foods make in terms of nutrient intakes and dietary patterns, specific to age and sex groups, as well as to differences in rural/urban locations and geographic regions. Indicators used in the monitoring and evaluation of agricultural interventions must go beyond production and productivity, to also include nutritional quality. If the intrinsically linked issues of poverty, food insecurity and malnutrition are to be truly addressed; and for the SDGs to be achieved, agricultural policies must integrate strategies to mitigate trade-offs across multiple sectors, including (but not limited to) nutrition and health.

 

Source:

http://doi.org/10.1371/journal.pone.0175098

 

0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments