Research Article: Human adipose tissue H3K4me3 histone mark in adipogenic, lipid metabolism and inflammatory genes is positively associated with BMI and HOMA-IR

Date Published: April 8, 2019

Publisher: Public Library of Science

Author(s): Daniel Castellano-Castillo, Pierre-Damien Denechaud, Lluis Fajas, Isabel Moreno-Indias, Wilfredo Oliva-Olivera, Francisco Tinahones, María Isabel Queipo-Ortuño, Fernando Cardona, Susanne Kaser.


Adipose tissue is considered an important metabolic tissue, in charge of energy storage as well as being able to act in systemic homeostasis and inflammation. Epigenetics involves a series of factors that are important for gene regulation or for chromatin structure, mostly DNA methylation and histone-tail modifications, which can be modified by environmental conditions (nutrition, lifestyle, smoking…). Since metabolic diseases like obesity and diabetes are closely related to lifestyle and nutrition, epigenetic deregulation could play an important role in the onset of these diseases and vice versa. However, little is known about histone marks in human adipose tissue. In a previous work, we developed a protocol for chromatin immunoprecipitation (ChIP) of frozen human adipose tissue. By using this method, this study investigates, for the first time, the H3K4 trimethylation (H3K4me3) mark (open chromatin) on the promoter of several factors involved in adipogenesis, lipid metabolism and inflammation in visceral adipose tissue (VAT) from human subjects with different degrees of body mass index (BMI) and metabolic disease.

VAT was collected and frozen at -80°C. 100 mg VAT samples were fixed in 0.5% formaldehyde and homogenized. After sonication, the sheared chromatin was immune-precipitated with an anti-H3K4me3 antibody linked to magnetic beads and purified. H3K4me3 enrichment was analyzed by qPCR for LEP, LPL, SREBF2, SCD1, PPARG, IL6, TNF and E2F1 promoters. mRNA extraction on the same samples was performed to quantify gene expression of these genes.

H3K4me3 was enriched at the promoter of E2F1, LPL, SREBF2, SCD1, PPARG and IL6 in lean normoglycemic compared to morbid obese subjects with prediabetes. Accordingly H3K4me3 mark enrichment at E2F1, LPL, SREBF2, SCD1, PPARG and IL6 promoters was positively correlated with the BMI and the HOMA-IR. Regression analysis showed a strong relationship between the BMI with H3K4me3 at the promoter of E2F1 and LPL, and with mRNA levels of LEP and SCD. In the case of HOMA-IR, the regression analysis showed associations with H3K4me3 enrichment at the promoter of SCD1 and IL6, and with the mRNA of LEP and SCD1. Moreover H3K4me3 at the E2F1 promoter was positively associated to E2F1 mRNA levels.

H3K4me3 enrichment in the promoter of LEP, LPL, SREBF2, SCD1, PPARG, IL6, TNF and E2F1 is directly associated with increasing BMI and metabolic deterioration. The H3k4me3 mark could be regulating E3F1 mRNA levels in adipose tissue, while no associations between the promoter enrichment of this mark and mRNA levels existed for the other genes studied.

Partial Text

Obesity and related disorders have become one of the greatest health problems in developed countries. Obesity usually involves an increased risk of metabolic syndrome (MetS), insulin resistance, diabetes, cardiovascular failure, stroke and some sort of cancers [1].

In this work, we studied for the first time the H3K4me3 histone mark at several gene promoters for genes associated with adipogenesis, lipid metabolism and inflammation in human adipose tissue. We identified histone modification (H3K4me3) in a population classified into three groups according to their BMI and glucose metabolic status: Lean NG, MO NG and MO PD. A description of the anthropometric and biochemical variables of these groups is given in Table 1. Statistical differences were observed between groups for BMI, waist circumference and the serum levels of glucose, insulin, HOMA-IR and HDL-C (Table 1).