Research Article: Hyaluronidase of Bloodsucking Insects and Its Enhancing Effect on Leishmania Infection in Mice

Date Published: September 17, 2008

Publisher: Public Library of Science

Author(s): Vera Volfova, Jitka Hostomska, Martin Cerny, Jan Votypka, Petr Volf, Jesus G. Valenzuela

Abstract: BackgroundSalivary hyaluronidases have been described in a few bloodsucking arthropods. However, very little is known about the presence of this enzyme in various bloodsucking insects and no data are available on its effect on transmitted microorganisms. Here, we studied hyaluronidase activity in thirteen bloodsucking insects belonging to four different orders. In addition, we assessed the effect of hyaluronidase coinoculation on the outcome of Leishmania major infection in BALB/c mice.Principal FindingsHigh hyaluronidase activity was detected in several Diptera tested, namely deer fly Chrysops viduatus, blackflies Odagmia ornata and Eusimilium latipes, mosquito Culex quinquefasciatus, biting midge Culicoides kibunensis and sand fly Phlebotomus papatasi. Lower activity was detected in cat flea Ctenocephalides felis. No activity was found in kissing bug Rhodnius prolixus, mosquitoes Anopheles stephensi and Aedes aegypti, tse-tse fly Glossina fuscipes, stable fly Stomoxys calcitrans and human louse Pediculus humanus. Hyaluronidases of different insects vary substantially in their molecular weight, the structure of the molecule and the sensitivity to reducing conditions or sodium dodecyl sulphate. Hyaluronidase exacerbates skin lesions caused by Leishmania major; more severe lesions developed in mice where L. major promastigotes were coinjected with hyaluronidase.ConclusionsHigh hyaluronidase activities seem to be essential for insects with pool-feeding mode, where they facilitate the enlargement of the feeding lesion and serve as a spreading factor for other pharmacologically active compounds present in saliva. As this enzyme is present in all Phlebotomus and Lutzomyia species studied to date, it seems to be one of the factors responsible for enhancing activity present in sand fly saliva. We propose that salivary hyaluronidase may facilitate the spread of other vector-borne microorganisms, especially those transmitted by insects with high hyaluronidase activity, namely blackflies (Simuliidae), biting midges (Ceratopogonidae) and horse flies (Tabanidae).

Partial Text: Hyaluronidases are a family of enzymes that degrade hyaluronan (HA) and several other glycosaminoglycan constituents of the extracellular matrix of vertebrates (for review see [1]). In insects, hyaluronidases are well-known from venoms of Hymenoptera and represent clinically important allergens of honey-bees, wasps and hornets [2]–[4]. Hyaluronidases were found also in cDNA libraries of salivary glands (sialomes) of various bloodsucking insects [5]–[8] and the enzyme activity was found in saliva of three groups of Diptera, namely sand flies, blackflies, and horse flies [9],[10]. Salivary hyaluronidases of parasitic insects may have diverse effects on the host. They play an important role in blood meal acquisition; by degrading HA abundant in host skin, hyaluronidases increase tissue permeability for other salivary components that serve as antihaemostatic, vasodilatory or anti-inflammatory agents [5],[9]. This is why hyaluronidases are frequently called “spreading factors” [11]. The enzyme activity facilitates the enlargement of the feeding lesion and the insect acquires the blood meal more rapidly. In addition, HA fragments were shown to have immunomodulatory properties; they affect maturation and migration of dendritic cells, induction of iNOS and chemokine secretion by macrophages and proliferation of activated T cells (reviewed in [12]). As blood sucking insects represent the most important vectors of infectious diseases, local immunomodulation of the vertebrate host may positively enhance the infection.

Parasitic insects utilize two strategies for finding blood: solenophagy (or vessel feeding) and telmophagy (or pool feeding). In solenophagic approach, the feeding fascicle cannulates a blood vessel, while in the pool-feeding mode the mouth part stylets slash through the skin, and the insect sips blood that oozes out from the hemorrhage. In our experiments, pronounced hyaluronidase activity was found in black flies, biting midges, sand flies and deer flies. All these insects belong to parasitic Diptera with pool-feeding mode of blood meal acquisition. The activity was detected also in cat flea (Ctenocephalides felis, Siphonaptera) and in Culex quinquefasciatus mosquito (Diptera). Although these two species belong to different insect orders, they are both vessel feeders. In contrast, no activity was detected in other vessel-feeding insects: human lice, kissing bugs, Anopheles and Aedes mosquitoes, tsetse flies, and stable flies.

Source:

http://doi.org/10.1371/journal.pntd.0000294

 

Leave a Reply

Your email address will not be published.