Research Article: Impact evaluation of different cash-based intervention modalities on child and maternal nutritional status in Sindh Province, Pakistan, at 6 mo and at 1 y: A cluster randomised controlled trial

Date Published: May 23, 2017

Publisher: Public Library of Science

Author(s): Bridget Fenn, Tim Colbourn, Carmel Dolan, Silke Pietzsch, Murtaza Sangrasi, Jeremy Shoham, Margaret E. Kruk

Abstract: BackgroundCash-based interventions (CBIs), offer an interesting opportunity to prevent increases in wasting in humanitarian aid settings. However, questions remain as to the impact of CBIs on nutritional status and, therefore, how to incorporate them into emergency programmes to maximise their success in terms of improved nutritional outcomes. This study evaluated the effects of three different CBI modalities on nutritional outcomes in children under 5 y of age at 6 mo and at 1 y.Methods and findingsWe conducted a four-arm parallel longitudinal cluster randomised controlled trial in 114 villages in Dadu District, Pakistan. The study included poor and very poor households (n = 2,496) with one or more children aged 6–48 mo (n = 3,584) at baseline. All four arms had equal access to an Action Against Hunger–supported programme. The three intervention arms were as follows: standard cash (SC), a cash transfer of 1,500 Pakistani rupees (PKR) (approximately US$14; 1 PKR = US$0.009543); double cash (DC), a cash transfer of 3,000 PKR; or a fresh food voucher (FFV) of 1,500 PKR; the cash or voucher amount was given every month over six consecutive months. The control group (CG) received no specific cash-related interventions. The median total household income for the study sample was 8,075 PKR (approximately US$77) at baseline. We hypothesized that, compared to the CG in each case, FFVs would be more effective than SC, and that DC would be more effective than SC—both at 6 mo and at 1 y—for reducing the risk of child wasting. Primary outcomes of interest were prevalence of being wasted (weight-for-height z-score [WHZ] < −2) and mean WHZ at 6 mo and at 1 y.The odds of a child being wasted were significantly lower in the DC arm after 6 mo (odds ratio [OR] = 0.52; 95% CI 0.29, 0.92; p = 0.02) compared to the CG. Mean WHZ significantly improved in both the FFV and DC arms at 6 mo (FFV: z-score = 0.16; 95% CI 0.05, 0.26; p = 0.004; DC: z-score = 0.11; 95% CI 0.00, 0.21; p = 0.05) compared to the CG. Significant differences on the primary outcome were seen only at 6 mo. All three intervention groups showed similar significantly lower odds of being stunted (height-for-age z-score [HAZ] < −2) at 6 mo (DC: OR = 0.39; 95% CI 0.24, 0.64; p < 0.001; FFV: OR = 0.41; 95% CI 0.25, 0.67; p < 0.001; SC: OR = 0.36; 95% CI 0.22, 0.59; p < 0.001) and at 1 y (DC: OR = 0.53; 95% CI 0.35, 0.82; p = 0.004; FFV: OR = 0.48; 95% CI 0.31, 0.73; p = 0.001; SC: OR = 0.54; 95% CI 0.36, 0.81; p = 0.003) compared to the CG. Significant improvements in height-for-age outcomes were also seen for severe stunting (HAZ < −3) and mean HAZ. An unintended outcome was observed in the FFV arm: a negative intervention effect on mean haemoglobin (Hb) status (−2.6 g/l; 95% CI −4.5, −0.8; p = 0.005). Limitations of this study included the inability to mask participants or data collectors to the different interventions, the potentially restrictive nature of the FFVs, not being able to measure a threshold effect for the two different cash amounts or compare the different quantities of food consumed, and data collection challenges given the difficult environment in which this study was set.ConclusionsIn this setting, the amount of cash given was important. The larger cash transfer had the greatest effect on wasting, but only at 6 mo. Impacts at both 6 mo and at 1 y were seen for height-based growth variables regardless of the intervention modality, indicating a trend toward nutrition resilience. Purchasing restrictions applied to food-based voucher transfers could have unintended effects, and their use needs to be carefully planned to avoid this.Trial registrationISRCTN registry ISRCTN10761532

Partial Text: The current global estimate of wasting prevalence is 7.4%, affecting approximately 50 million children under the age of 5 y annually [1]. The World Health Assembly (WHA) 2025 target to reduce and maintain childhood wasting at 5% is unlikely to be met [1]. Globally, attention to child and maternal undernutrition is very high, with agreed targets and impetus through, e.g., the Scaling Up Nutrition (SUN) Movement and the Zero Hunger Initiative, as well as WHA nutrition targets and indicators in the recently framed Sustainable Development Goals. In addition, there is considerable attention being paid to food systems and healthy diets as a potentially sustainable means of preventing high levels of stunting, wasting, and micronutrient malnutrition [2]. According to the 2016 Global Nutrition Report, the overall trend is one of reduction in the prevalence of child undernutrition, though the rate of progress between regions is uneven [3], with the most progress occurring in Asia and the least in sub-Saharan Africa. Asia, however, has the largest numbers of wasted and stunted children [4]. Pakistan presents a particular challenge as the nutritional status of children has shown very little progress over the last 15 y and has, for some nutrition indicators, worsened [5]. This is especially so in Sindh Province, which has the highest prevalence of childhood wasting and stunting in Pakistan [6]. The most recently available population data in Sindh Province indicate that the prevalence of wasting and stunting is 15.4% and 48.0%, respectively, in children under 5 y of age [7]. Levels of anaemia and vitamin A deficiency in Sindh Province have both shown an increase since 2001 [5,6]. In 2011, 73% of children under 5 y of age in Sindh Province were anaemic (haemoglobin [Hb] level < 110 g/l) [6]. Taken together, these statistics indicate an ongoing and serious public health problem. The flow of clusters and participants through the trial is shown in Fig 1. Enrolment and baseline data collection started together at the end of May 2015 and continued until the beginning of August 2015. Thirteen eligible households refused to participate at the enrolment stage as permission was not given by the head of household. Twenty-seven households migrated away from their village after enrolment (CG = 11, DC = 4, FFV = 3, SC = 9) and were not replaced. These households had similar baseline characteristics between arms. There were a small number of children for whom outcome data were collected who were considered to have been different from the child enrolled at baseline, and these children were excluded from the analysis at 6 mo (n = 29) and at 1 y (n = 36). Overall, the number of households was slightly lower in the DC arm, which was known before randomisation but was not in the original research protocol. No evaluation clusters were lost to follow-up; response rates for households and children, respectively, within clusters were 95.6% and 98.3% at 6 mo and 95.0% and 96.8% at 1 y. The number of missing child data was slightly lower at 1 y compared to 6 mo for the CG only, as efforts were made to reduce loss to follow-up by offering a hygiene kit once the final data had been collected. Compared to the other arms, the CG had the lowest number of missing child data but, as the extent of missing data was small for all arms, we did not anticipate any effects on comparability between arms. All clusters received and utilised the correct intervention assigned during implementation. Households receiving the larger amount of cash (DC) saw a significant reduction in the odds of their children being wasted at 6 mo. In addition, the DC intervention had positive and significant effects on stunting (HAZ). The FFVs also had positive effects on stunting, although the odds of being wasted for children in this intervention group was no different from that in the CG. No intervention effects for wasting were seen 6 mo after the last disbursement (at 1 y). Children in households receiving SC were no different from children in the CG for the wasting outcome. Source: http://doi.org/10.1371/journal.pmed.1002305

 

Leave a Reply

Your email address will not be published.