Research Article: Increased Gamma Brainwave Amplitude Compared to Control in Three Different Meditation Traditions

Date Published: January 24, 2017

Publisher: Public Library of Science

Author(s): Claire Braboszcz, B. Rael Cahn, Jonathan Levy, Manuel Fernandez, Arnaud Delorme, Joseph Najbauer.

http://doi.org/10.1371/journal.pone.0170647

Abstract

Despite decades of research, effects of different types of meditation on electroencephalographic (EEG) activity are still being defined. We compared practitioners of three different meditation traditions (Vipassana, Himalayan Yoga and Isha Shoonya) with a control group during a meditative and instructed mind-wandering (IMW) block. All meditators showed higher parieto-occipital 60–110 Hz gamma amplitude than control subjects as a trait effect observed during meditation and when considering meditation and IMW periods together. Moreover, this gamma power was positively correlated with participants meditation experience. Independent component analysis was used to show that gamma activity did not originate in eye or muscle artifacts. In addition, we observed higher 7–11 Hz alpha activity in the Vipassana group compared to all the other groups during both meditation and instructed mind wandering and lower 10–11 Hz activity in the Himalayan yoga group during meditation only. We showed that meditation practice is correlated to changes in the EEG gamma frequency range that are common to a variety of meditation practices.

Partial Text

Scientific publications on meditation have dramatically increased over the last decade [1]. The recent interest in these ancient mental practices is concomitant with the development of new brain imaging technologies as well as the incorporation of mindfulness, one of the core psychological components of these practices, into psychotherapeutic and clinical interventions [2, 3]. Together these studies have demonstrated the beneficial effects of meditative practices on perception [4, 5], cognition [6, 7], emotional processing [8, 9], and neuroplasticity [10–12]. A recent meta-analysis of neuroimaging studies over about 300 meditation practitioners has shown that meditation practice is consistently associated with changes in morphology of the prefrontal cortex and body awareness regions [13]. Such changes might have an impact on the brain functioning, however fMRI-based studies can not capture the real-time dynamic of the brain activity as can be done using electroencephalography (EEG), the recording of electrical currents measurable from the surface of the scalp.

As summarized in Table 3, the main results of our study are twofold: first we demonstrated that when combining both the meditation and instructed mind-wandering periods, meditators from 3 different traditions exhibited higher gamma (60–110 Hz) spectral power over parieto-occipital electrodes as a trait effect when compared to control participants. When considering independently the meditation period, meditators from 3 different traditions relative to control participants showed higher 60–110 Hz spectral power mainly over occipital electrode sites but also, in a less robust way, over frontal and midline electrode sites. Of note, when considering instructed mind-wandering periods only, the increased gamma power in meditators compared to controls was observed as a trend. It is unlikely that the gamma effects were due to eye or scalp muscle artifacts as demonstrated by our analysis of independent components. In addition, we observed a positive linear correlation between the length of experience in meditation and the 60–110 Hz power over parieto-occipital electrodes in the combined meditation and instructed mind-wandering conditions. We also observed that Vipassana meditation practitioners exhibited higher power in 7–11 Hz alpha frequency band as a trait effect across both instructed mind-wandering and meditation conditions compared to other meditation groups and control participants.

We have provided evidence that daily meditation practice is correlated to both state and trait changes in the observed amplitude of brain electrical oscillations of three different meditation practices. These changes do appear to vary across meditative techniques but one shared feature appears to be enhanced gamma power in the parieto-occipital area. In addition, one specific finding that seems to be unique amongst these three groups of meditative practice is the enhanced alpha power seen as a trait effect in Vipassana practitioners relative to control subjects, Isha shoonya yoga and Himalayan yoga tradition practitioners. Further EEG studies of meditation should favour comparative designs to help move forward our understanding of the neuronal basis of meditation practice.

 

Source:

http://doi.org/10.1371/journal.pone.0170647

 

0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments