Research Article: Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle

Date Published: August 1, 2017

Publisher: Public Library of Science

Author(s): Miłosz Czuba, Robert Wilk, Jakub Karpiński, Małgorzata Chalimoniuk, Adam Zajac, Józef Langfort, Michal Toborek.

http://doi.org/10.1371/journal.pone.0180380

Abstract

The main objective of this research was to evaluate the efficacy of intermittent hypoxic training (IHT) on anaerobic and aerobic capacity and swimming performance in well-trained swimmers. Sixteen male swimmers were randomly divided into a hypoxia (H) group (n = 8), which trained in a normobaric hypoxia environment, and a control (C) group (n = 8), which exercised under normoxic conditions. However, one participant left the study without explanation. During the experiment group H trained on land twice per week in simulated hypoxia (FiO2 = 15.5%, corresponding to 2,500 m a.s.l); however, they conducted swim training in normoxic conditions. Group C performed the same training program under normoxic conditions. The training program included four weekly microcyles, followed by three days of recovery. During practice sessions on land, the swimmers performed 30 second sprints on an arm-ergometer, alternating with two minute high intensity intervals on a lower limb cycle ergometer. The results showed that the training on land caused a significant (p<0.05) increase in absolute maximal workload (WRmax) by 7.4% in group H and by 3.2% in group C and relative values of VO2max by 6.9% in group H and 3.7% in group C. However, absolute values of VO2max were not significantly changed. Additionally, a significant (p<0.05) increase in mean power (Pmean) during the first (11.7%) and second (11.9%) Wingate tests was only observed in group H. The delta values of lactate concentration (ΔLA) after both Wingate tests were significantly (p<0.05) higher in comparison to baseline levels by 28.8% in group H. Opposite changes were observed in delta values of blood pH (ΔpH) after both Wingate tests in group H, with a significant decrease in values of ΔpH by 33.3%. The IHT caused a significant (p<0.05) improvement in 100m and 200m swimming performance, by 2.1% and 1.8%, respectively in group H. Training in normoxia (group C), resulted in a significant (p<0.05) improvement of swimming performance at 100m and 200m, by 1.1% and 0.8%, respectively. In conclusion, the most important finding of this study includes a significant improvement in anaerobic capacity and swimming performance after high-intensity IHT. However, this training protocol had no effect on absolute values of VO2max and hematological variables.

Partial Text

Over the past few years, intermittent hypoxic training (IHT) has been recognized as an effective method to improve performance in sport disciplines that require a high level of aerobic and/or anaerobic endurance. In IHT, athletes train or are exposed to simulated normobaric hypoxia or less often in a natural high-altitude environment under hypobaric conditions, while living under normoxic conditions [1]. Compared to other well-known methods of altitude training IHT presents a few essential advantages that can be utilized as an integral component of modern athletic training, aimed at peak performance. Among them the most evident are: 1) IHT prevents athletes from sleeping disorders and dehydration, which are typical symptoms seen during an extended stay at altitude when other models of altitude training are applied [2], 2) recovery following IHT training sessions occurs under normoxic conditions, which prevents athletes from deleterious effects of prolonged hypoxia and shortens the post-training recovery time, and 3) the time spent apart from training under hypoxic conditions may be used for normal training activity [3,4].

In conclusion, the most important finding of this study includes a significant improvement in anaerobic capacity and swimming performance after high-intensity IHT. However, this training protocol had no effect on absolute values of VO2max and hematological variables. During the experiment, significant changes were observed in post-exercise acid-base equilibrium following the IHT protocol. The results of this study indicate that high-intensity intermittent hypoxic training (IHT) represents an effective training means for improving anaerobic capacity and swimming sprint performance.

 

Source:

http://doi.org/10.1371/journal.pone.0180380

 

0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments