Research Article: Isolation and characterization of a resident tolerant Saccharomyces cerevisiae strain from a spent sulfite liquor fermentation plant

Date Published: December 13, 2012

Publisher: Springer

Author(s): Violeta Sànchez i Nogué, Maurizio Bettiga, Marie F Gorwa-Grauslund.

http://doi.org/10.1186/2191-0855-2-68

Abstract

Spent Sulfite Liquor (SSL) from wood pulping facilities is a sugar rich effluent that can be used as feedstock for ethanol production. However, depending on the pulping process conditions, the release of monosaccharides also generates a range of compounds that negatively affect microbial fermentation. In the present study, we investigated whether endogenous yeasts in SSL-based ethanol plant could represent a source of Saccharomyces cerevisiae strains with a naturally acquired tolerance towards this inhibitory environment. Two isolation processes were performed, before and after the re-inoculation of the plant with a commercial baker’s yeast strain. The isolates were clustered by DNA fingerprinting and a recurrent Saccharomyces cerevisiae strain, different from the inoculated commercial baker’s yeast strain, was isolated. The strain, named TMB3720, flocculated heavily and presented high furaldehyde reductase activity. During fermentation of undiluted SSL, TMB3720 displayed a 4-fold higher ethanol production rate and 1.8-fold higher ethanol yield as compared to the commercial baker’s yeast. Another non-Saccharomyces cerevisiae species, identified as the pentose utilizing Pichia galeiformis, was also recovered in the last tanks of the process where the hexose to pentose sugar ratio and the inhibitory pressure are expected to be the lowest.

Partial Text

Lignocellulosic biomass, composed of cellulose, hemicellulose and lignin, represents a potential source of fermentable sugars for the production of fuels and bulk chemicals (Wyman and Goodman 1993; Hahn-Hägerdal et al. 2006). In ethanol plants, the heat pretreated biomass is hydrolysed and all sugars are potential substrates for ethanol production (recently reviewed by (Alvira et al. 2010)). In pulp and paper mills, however, the cellulose fraction can be used for the production of pulp, paper, board and cellulose-based products. This requires treating wood biomass with a cooking liquor to obtain the discrete fibres. During the process, the monomeric sugars from the hemicellulose fraction are also released into the cooking liquor during the delignification process (Biermann 1996). When the generated cellulose pulp is removed from the cooking liquor, the resulting by-product stream (e.g. spent sulfite liquor (SSL) when using sulfite-based liquor), that contains the remaining monomeric sugars, can be used for the production of ethanol as a co-product (see e.g. (Borregaard (2012); Domsjö Fabriker AB (2012))). In both types of industrial processes, baker’s yeast Saccharomyces cerevisiae is traditionally chosen for ethanol production due to its high tolerance towards high concentrations of sugars and ethanol (Rudolf et al. 2009).

PCR-fingerprinting methods have previously been used to follow the population dynamics in sugar cane-based distilleries over a fermentation season (de Souza et al. 2005; Silva-Filho et al. 2005ab; Basílio et al. 2008) and during wine fermentation (Xufre et al. 2011). In the present study, a similar method was applied to demonstrate that a resident S. cerevisiae strain, different from the inoculum strain, can dominate and repeatedly take over the fermentation process in a multistage continuous SSL fermentation plant. Whereas sugar cane juice and molasses, obtained from the processing of sugar cane, contain already considerable amounts of readily fermentable sugars (Basso et al. 2011), lignocellulosic-based feedstock requires the hydrolysis of polysaccharides to obtain fermentable sugars. As a consequence, inhibitory compounds are also released during the pretreatment step (Almeida et al. 2007), which implies that the obtained strain may differ considerably from previously isolated strains from sugar cane distilleries (Silva-Filho et al. 2005a; Basso et al. 2008). In the two isolation processes that were carried out before and after a regular plant re-inoculation with commercial baker’s yeast (BY), BY was never identified. Instead, all isolates displayed very similar molecular and physiological profiles that were distinct from BY. The identified contaminant yeast strain, named TMB3720, clearly fermented better undiluted softwood SSL than BY, with 4-fold higher maximum specific ethanol productivity and 1.8-fold higher ethanol yield. It also displayed similar ethanol yield and 1.6-fold higher maximum specific ethanol productivity than the previously reported tolerant industrial strain TMB3500 (Almeida et al. 2009).

The authors declare that they have no competing interests.

 

Source:

http://doi.org/10.1186/2191-0855-2-68

 

Leave a Reply

Your email address will not be published.