Research Article: Killing of Trypanosomatid Parasites by a Modified Bovine Host Defense Peptide, BMAP-18

Date Published: February 3, 2009

Publisher: Public Library of Science

Author(s): Lee R. Haines, Jamie M. Thomas, Angela M. Jackson, Brett A. Eyford, Morteza Razavi, Cristalle N. Watson, Brent Gowen, Robert E. W. Hancock, Terry W. Pearson, Jesus G. Valenzuela

Abstract: BackgroundTropical diseases caused by parasites continue to cause socioeconomic devastation that reverberates worldwide. There is a growing need for new control measures for many of these diseases due to increasing drug resistance exhibited by the parasites and problems with drug toxicity. One new approach is to apply host defense peptides (HDP; formerly called antimicrobial peptides) to disease control, either to treat infected hosts, or to prevent disease transmission by interfering with parasites in their insect vectors. A potent anti-parasite effector is bovine myeloid antimicrobial peptide-27 (BMAP-27), a member of the cathelicidin family. Although BMAP-27 is a potent inhibitor of microbial growth, at higher concentrations it also exhibits cytotoxicity to mammalian cells. We tested the anti-parasite activity of BMAP-18, a truncated peptide that lacks the hydrophobic C-terminal sequence of the BMAP-27 parent molecule, an alteration that confers reduced toxicity to mammalian cells.Methodology/Principal FindingsBMAP-18 showed strong growth inhibitory activity against several species and life cycle stages of African trypanosomes, fish trypanosomes and Leishmania parasites in vitro. When compared to native BMAP-27, the truncated BMAP-18 peptide showed reduced cytotoxicity on a wide variety of mammalian and insect cells and on Sodalis glossindius, a bacterial symbiont of the tsetse vector. The fluorescent stain rhodamine 123 was used in immunofluorescence microscopy and flow cytometry experiments to show that BMAP-18 at low concentrations rapidly disrupted mitochondrial potential without obvious alteration of parasite plasma membranes, thus inducing death by apoptosis. Scanning electron microscopy revealed that higher concentrations of BMAP-18 induced membrane lesions in the parasites as early as 15 minutes after exposure, thus killing them by necrosis. In addition to direct killing of parasites, BMAP-18 was shown to inhibit LPS-induced secretion of tumour necrosis factor alpha (TNF-α), a cytokine that is associated with inflammation and cachexia (wasting) in sleeping sickness patients. As a prelude to in vivo applications, high affinity antibodies to BMAP-18 were produced in rabbits and used in immuno-mass spectrometry assays to detect the intact peptide in human blood and plasma.Conclusions/SignificanceBMAP-18, a truncated form of the potent antimicrobial BMAP-27, showed low toxicity to mammalian cells, insect cells and the tsetse bacterial symbiont Sodalis glossinidius while retaining an ability to kill a variety of species and life cycle stages of pathogenic kinetoplastid parasites in vitro. BMAP-18 also inhibited secretion of TNF-α, an inflammatory cytokine that plays a role in the cachexia associated with African sleeping sickness. These findings support the idea that BMAP-18 should be explored as a candidate for therapy of economically important trypanosome-infected hosts, such as cattle, fish and humans, and for paratransgenic expression in Sodalis glossinidius, a bacterial symbiont in the tsetse vector, as a strategy for interference with trypanosome transmission.

Partial Text: Trypanosomatid protozoan parasites cause a variety of diseases that affect the livelihood of people in vast areas of the world. Control of such diseases depends, to a large extent, on a small set of prophylactic and therapeutic anti-parasite drugs [1]. However, as with many microbes, inappropriate use of these agents has led to an alarming increase in parasite resistance, for example with African trypanosomes and Leishmania[2],[3]. This has created a need for novel compounds to prevent and cure diseases caused by these predominantly tropical parasites. An ideal anti-parasite agent would have a broad spectrum of activity, would be largely unaffected by mutations in the target microbe and be non-toxic in vivo. Effectors with such potential are the host defense peptides (HDP), ancient and highly successful molecules that remain functional over long periods of evolution, suggesting that microbial resistance to them is not inevitable.

Many of the parasites that cause disease remain problematic since in the absence of effective vaccines, control measures rely heavily on prophylactic or therapeutic drugs that have undesirable characteristics. Many therapeutics are prohibitively expensive to the people that need them and have unacceptable toxicity. In addition, there is increasing drug resistance in the target populations of parasites, for example in African trypanosomes [2] and Leishmania[3]. There is thus a need for new anti-parasite effectors that have more desirable features, such as a broad spectrum of activity, low toxicity for the recipient and a low propensity to induce microbial resistance. Host defense peptides have many of these features thus were chosen for our initial work on protozoan parasites [15] and for the work reported here.

Source:

http://doi.org/10.1371/journal.pntd.0000373

 

Leave a Reply

Your email address will not be published.