Research Article: Limiting factors for wearing personal protective equipment (PPE) in a health care environment evaluated in a randomised study

Date Published: January 22, 2019

Publisher: Public Library of Science

Author(s): Martina Loibner, Sandra Hagauer, Gerold Schwantzer, Andrea Berghold, Kurt Zatloukal, Regan Marsh.

http://doi.org/10.1371/journal.pone.0210775

Abstract

Pandemics and re-emerging diseases put pressure on the health care system to prepare for patient care and sample logistics requiring enhanced personnel protective equipment (PPE) for health care workers. We generated quantifiable data on ergonomics of PPE applicable in a health care setting by defining error rates and physically limiting factors due to PPE-induced restrictions. Nineteen study volunteers tested randomly allocated head- or full body-ventilated PPE suits equipped with powered-air-purifying-respirators and performed four different tasks (two laboratory tutorials, a timed test of selective attention and a test investigating reaction time, mobility, speed and physical exercise) during 6 working hours at 22°C on one day and 4 working hours at 28°C on another day. Error rates and physical parameters (fluid loss, body temperature, heart rate) were determined and ergonomic-related parameters were assessed hourly using assessment sheets. Depending on the PPE system the most restrictive factors, which however had no negative impact on performance (speed and error rate), were: reduced dexterity due to multiple glove layers, impaired visibility by flexible face shields and back pain related to the respirator of the fully ventilated suit. Heat stress and liquid loss were perceived as restrictive at a working temperature of 28°C but not 22°C.

Partial Text

Pandemics and re-emerging diseases put pressure on the health care system to prepare for patient care and sample management for diagnostics requiring personnel protective equipment (PPE) for exposed health care workers (HCWs). The majority of European hospitals are not equipped with isolation units for patients and high security containments for sample management in the event of emerging or re-emerging infectious diseases with high risk potential. Specific challenges in a hospital environment are patient care, the handling of infectious samples for diagnostics and the work with dead bodies.

In this study following good clinical practice guidelines nineteen study volunteers were recruited to wear one of two different types of randomly allocated PPE suits using the web-based randomizer software (www.randomizer.at) by the Institute for Medical Informatics, Statistics and Documentation of the Medical University Graz (IMI). The software’s GCP-compliance (Good Clinical Practice) has been confirmed by the Austrian Agency for Health and Food Safety. Subjects had to perform four different tasks six times at 22°C on one day and four times at 28°C on another day in the local core facility clinical research center. Recruitment and data collection was done between May and July 2011. The study was registered at ClinicalTrials.gov (NCT03004690, “Testing of Personal Protective Equipment (PPE)) after its completion since the aim was not to provide data for a certification or approval process for medical products or devices.

Nineteen volunteers, 10 male, 9 female, aged between 21 and 38 years, participated in this study. Three subjects (two with suit B, one with suit A) who terminated the study before the end of the task series were included in the analyses of tasks in which they have participated. Two of them terminated due to indication of score 10 on the assessment sheet after series 4 (paranasal sinus obstruction) and after series 5 (hunger) on the first study day at 22°C. These subjects continued the study on study day two at 28°C. One subject assigned to suit B resigned from the study after the task series at 22°C not because of physical stress but without giving reason.

Based on the facts that wearing full body suits and powered-air-purifying-respirators (PAPR) protect from exposure to pathogens but constrict mobility, view and cause heat stress we tested whether these restraints could impact, for example, on concentration and increase in error rates due to fatigue. The combined evaluation of biophysical conditions and working performance of test persons should provide data on usability of PPE which can be easily and widely implemented in health care for bio-hazard protection [3].

In conclusion, both suit types were well tolerated when performing different tasks related to sample processing and analyses necessary when protection of HCWs by PPE is required. The combined evaluation of physical parameters and subjective perception of restrictions and discomfort in task series was informative for identifying limiting factors for working in different types of PPE and should generate trust and confidence of personnel for working in PPE. Furthermore, data generated on the impact of wearing PPE under prolonged and stressful working conditions on error rates should be considered in defining working procedures and safety measures. This study can add to data about the impact of PPE on health care worker performance and comfort which may be of value for future pandemics.

 

Source:

http://doi.org/10.1371/journal.pone.0210775

 

Leave a Reply

Your email address will not be published.