Research Article: Mastitis risk effect on the economic consequences of paratuberculosis control in dairy cattle: A stochastic modeling study

Date Published: September 26, 2019

Publisher: Public Library of Science

Author(s): Leslie J. Verteramo Chiu, Loren W. Tauer, Yrjo T. Gröhn, Rebecca L. Smith, Fernanda C. Dórea.

http://doi.org/10.1371/journal.pone.0217888

Abstract

The benefits and efficacy of control programs for herds infected with Mycobacterium avium subsp. paratuberculosis (MAP) have been investigated under various contexts. However, most previous research investigated paratuberculosis control programs in isolation, without modeling the potential association with other dairy diseases. This paper evaluated the benefits of MAP control programs when the herd is also affected by mastitis, a common disease causing the largest losses in dairy production. The effect of typically suggested MAP controls were estimated under the assumption that MAP infection increased the rate of clinical mastitis. We evaluated one hundred twenty three control strategies comprising various combinations of testing, culling, and hygiene, and found that the association of paratuberculosis with mastitis alters the ranking of specific MAP control programs, but only slightly alters the cost-benefit difference of particular MAP control components, as measured by the distribution of net present value of a representative U.S. dairy operation. In particular, although testing and culling for MAP resulted in a reduction in MAP incidence, that control led to lower net present value (NPV) per cow. When testing was used, ELISA was more economically beneficial than alternative testing regimes, especially if mastitis was explicitly modeled as more likely in MAP-infected animals, but ELISA testing was only significantly associated with higher NPV if mastitis was not included in the model at all. Additional hygiene was associated with a lower NPV per cow, although it lowered MAP prevalence. Overall, the addition of an increased risk of mastitis in MAP-infected animals did not change model recommendations as much as failing to consider.

Partial Text

Paratuberculosis, or Johne’s Disease, is a chronic intestinal disease of ruminants caused by infection with Mycobacterium avium subsp. paratuberculosis (MAP). Animals are usually infected at a young age, with a variable and often extended latent period [1]. Infected animals have lower milk production [2–9], decreased reproductive performance in later stages of disease [6,10–12], and are often culled early [5,13]. It is difficult to control MAP in dairy herds; many tests have poor diagnostic sensitivity [14], MAP persists in the environment for long periods of time [15], paratuberculosis symptoms are slow to develop [16], and the available vaccines are limited in distribution due to their cross-reaction with tuberculosis diagnostics [17].

The infection and testing model (Fig 1) has been previously described [35], and used for an economic analysis of MAP [31]. This is a continuous-time model, simulated over 5 years after a burn-in of 50 years using values representative of US dairy herds. Details are available in the supplemental material (S1 Table). Briefly, calves may be born susceptible or infected via vertical transmission. Susceptible calves may be infected by contact with transiently-shedding infected calves or with shedding adults. All calves age into heifers; susceptible heifers may be infected by contact with shedding adults, while infected heifers are assumed to be latently infected. All heifers age into adults. Adults infected as calves or heifers may have progressing infections, resulting in fast transition from latency, through a low-shedding phase, to high shedding and clinical disease. However, some adults infected as calves or heifers and all adults infected by contact with shedding adults experience non-progressing infections, which remain in latency for a longer period of time and only enter the low-shedding phase. All animals may be culled or die, based on an age-appropriate mortality/culling rate.

This research shows that, in the case of MAP and clinical mastitis, consideration of interacting disease systems did not importantly change the results of this economic analysis of disease control. Adding an increased rate of CM among infected animals to an economic model of paratuberculosis control only slightly changed the ranking of control programs. Specifically, failing to include CM in the model resulted in a weaker preference for standard hygiene alone. Including CM but not its association with paratuberculosis resulted in a stronger preference for standard hygiene alone, biannual ELISA testing and culling adults after 2 positive tests, and continuous ELISA with the same culling policy. Culling for paratuberculosis should in theory have the side benefit of partially controlling for CM. However, the inclusion of an association between CM and paratuberculosis did not change the overall conclusions of this economic model. This is likely due to two factors: the high cost of MAP control and the relatively small size of the impact of MAP on mastitis.

We have found that, in the setting of a typical commercial US dairy, the addition of clinical mastitis to a model for MAP control only slightly changed the ranking of individual control programs, but did not greatly change the overall cost-benefit difference of components of MAP control. These suggest that only testing by ELISA may be economically beneficial.

 

Source:

http://doi.org/10.1371/journal.pone.0217888

 

Leave a Reply

Your email address will not be published.