Research Article: No causal effects of serum urate levels on the risk of chronic kidney disease: A Mendelian randomization study

Date Published: January 15, 2019

Publisher: Public Library of Science

Author(s): Daniel M. Jordan, Hyon K. Choi, Marie Verbanck, Ruth Topless, Hong-Hee Won, Girish Nadkarni, Tony R. Merriman, Ron Do, Cosetta Minelli

Abstract: BackgroundStudies have shown strong positive associations between serum urate (SU) levels and chronic kidney disease (CKD) risk; however, whether the relation is causal remains uncertain. We evaluate whether genetic data are consistent with a causal impact of SU level on the risk of CKD and estimated glomerular filtration rate (eGFR).Methods and findingsWe used Mendelian randomization (MR) methods to evaluate the presence of a causal effect. We used aggregated genome-wide association data (N = 110,347 for SU, N = 69,374 for gout, N = 133,413 for eGFR, N = 117,165 for CKD), electronic-medical-record-linked UK Biobank data (N = 335,212), and population-based cohorts (N = 13,425), all in individuals of European ancestry, for SU levels and CKD. Our MR analysis showed that SU has a causal effect on neither eGFR level nor CKD risk across all MR analyses (all P > 0.05). These null associations contrasted with our epidemiological association findings from the 4 population-based cohorts (change in eGFR level per 1-mg/dl [59.48 μmol/l] increase in SU: −1.99 ml/min/1.73 m2; 95% CI −2.86 to −1.11; P = 8.08 × 10−6; odds ratio [OR] for CKD: 1.48; 95% CI 1.32 to 1.65; P = 1.52 × 10−11). In contrast, the same MR approaches showed that SU has a causal effect on the risk of gout (OR estimates ranging from 3.41 to 6.04 per 1-mg/dl increase in SU, all P < 10−3), which served as a positive control of our approach. Overall, our MR analysis had >99% power to detect a causal effect of SU level on the risk of CKD of the same magnitude as the observed epidemiological association between SU and CKD. Limitations of this study include the lifelong effect of a genetic perturbation not being the same as an acute perturbation, the inability to study non-European populations, and some sample overlap between the datasets used in the study.ConclusionsEvidence from our series of causal inference approaches using genetics does not support a causal effect of SU level on eGFR level or CKD risk. Reducing SU levels is unlikely to reduce the risk of CKD development.

Partial Text: Approximately 10% of the global population has chronic kidney disease (CKD) [1,2], which can result in end-stage renal disease, associated with shortened life expectancy and requirement for dialysis or kidney transplantation [3]. There are limited therapeutic options for CKD, with management predominantly focused on control of blood pressure, diabetes, and complications. Hence, there is an intense search for novel therapeutic targets.

In this study, we investigated a potential causal role for SU level in the development of CKD using a series of complementary MR analyses. Despite previous observational study findings that SU levels were strongly associated with the risk of incident CKD [4,5], our MR analyses found no evidence for a causal role of SU level for eGFR level or incident CKD. In contrast, our positive control MR analysis demonstrated that SU level was causal for the risk of gout, which is consistent with a previous study that showed similar results [28].



Leave a Reply

Your email address will not be published.