Research Article: Novel Insights into the Genetic Controls of Primitive and Definitive Hematopoiesis from Zebrafish Models

Date Published: July 25, 2012

Publisher: Hindawi Publishing Corporation

Author(s): Raman Sood, Paul Liu.

http://doi.org/10.1155/2012/830703

Abstract

Hematopoiesis is a dynamic process where initiation and maintenance of hematopoietic stem cells, as well as their differentiation into erythroid, myeloid and lymphoid lineages, are tightly regulated by a network of transcription factors. Understanding the genetic controls of hematopoiesis is crucial as perturbations in hematopoiesis lead to diseases such as anemia, thrombocytopenia, or cancers, including leukemias and lymphomas. Animal models, particularly conventional and conditional knockout mice, have played major roles in our understanding of the genetic controls of hematopoiesis. However, knockout mice for most of the hematopoietic transcription factors are embryonic lethal, thus precluding the analysis of their roles during the transition from embryonic to adult hematopoiesis. Zebrafish are an ideal model organism to determine the function of a gene during embryonic-to-adult transition of hematopoiesis since bloodless zebrafish embryos can develop normally into early larval stage by obtaining oxygen through diffusion. In this review, we discuss the current status of the ontogeny and regulation of hematopoiesis in zebrafish. By providing specific examples of zebrafish morphants and mutants, we have highlighted the contributions of the zebrafish model to our overall understanding of the roles of transcription factors in regulation of primitive and definitive hematopoiesis.

Partial Text

Recently, zebrafish have emerged as a powerful vertebrate model system due to their external fertilization, optically clear embryos, rapid development, availability of tools for manipulations of gene expression during development, and the ability to generate genetic mutants by random (insertional and chemical) and targeted mutagenesis [1–3]. Microinjections of antisense morpholinos, which cause transient knockdown of gene activity, and mRNA allows for analysis of the effects of loss and gain of function of specific genes during development [4]. Whole-mount in situ hybridization (WISH) is a powerful technique to analyze the spatiotemporal expression of genes, and placing genes in regulatory cascades by analysis of genetic mutants and/or embryos injected with morpholinos (commonly termed as morphants) [5, 6].

In mammals, hematopoiesis occurs in successive but overlapping waves that occur at distinct anatomical locations [65]. Overall, the hematopoietic process is distinguished into primitive and definitive hematopoiesis based on the type of blood cells generated. Primitive hematopoiesis is transient in nature and produces unipotent blood cells that arise directly from the mesoderm. Definitive hematopoiesis produces multipotent blood cells that give rise to multiple different lineages through cellular intermediates and support blood cell development throughout the life of the organism. Here, we have summarized the overall process of mammalian hematopoiesis based on the studies using mouse models.

Despite the spatial and temporal differences during hematopoiesis between zebrafish and mammals as discussed above, the overall process is highly conserved producing the same effective repertoire of hematopoietic cells. It begins from a cell, termed hemangioblast, that serves as a common precursor for hematopoiesis and vasculogenesis [92, 93]. A complex network of regulatory signals is involved in the specification and lineage commitment of precursors during primitive and definitive hematopoiesis in mammals. These include homeobox, notch, vegf, and wnt signaling pathways as well as specific transcription factors, such as Tal1 (Scl), Lmo2, Gata1, Cmyb, Runx1, Spi1 (Pu.1), and Ikzf1 (Ikaros), which are shown to function in a hierarchical manner [5, 94–99]. The importance of proper functioning of these transcription factors is evident from the preponderance of mutations and genomic rearrangements disrupting their activity detected in several blood disorders, particularly leukemias and lymphomas [100–106].

Recent studies have demonstrated the need to address dosage requirements of transcription factors in the hematopoietic cascade as opposed to a simple on versus off situation [153–156]. In zebrafish, it is relatively easy to manipulate gene dosage by careful tuning of morpholino doses and generation of hypomorphic alleles using TILLING. Therefore, differential requirements for some of the transcription factors either in terms of level of activity or different isoforms have been demonstrated recently in zebrafish, as discussed below.

Depicted in Figure 1 is a schematic of the overall view of zebrafish hematopoiesis emerging from these studies. It is clear from the above-mentioned studies that zebrafish has played a significant role in our understanding of the genetic controls of hematopoiesis, particularly the dosage-specific requirements during different stages. The viability to adulthood with multi-lineage hematopoiesis in runx1 knockout zebrafish clearly demonstrated that Runx1 is dispensable for adult hematopoiesis. Similarly, Ikzf1 was found to be dispensable for adult lymphopoiesis. On the other hand, Cmyb was found to be essential for adult hematopoiesis, while dispensable for larval definitive stage. Genetic mutants need to be generated for spi1 to elucidate its exact role in maintaining proper balance between adult erythropoiesis and myelopoiesis.

 

Source:

http://doi.org/10.1155/2012/830703

 

Leave a Reply

Your email address will not be published.