Research Article: Pax7 Is Necessary and Sufficient for the Myogenic Specification of CD45+:Sca1+ Stem Cells from Injured Muscle

Date Published: May 11, 2004

Publisher: Public Library of Science

Author(s): Patrick Seale, Jeff Ishibashi, Anthony Scimè, Michael A Rudnicki

Abstract: CD45+:Sca1+ adult stem cells isolated from uninjured muscle do not display any myogenic potential, whereas those isolated from regenerating muscle give rise to myoblasts expressing the paired-box transcription factor Pax7 and the bHLH factors Myf5 and MyoD. By contrast, CD45+:Sca1+ isolated from injured Pax7 −/− muscle were incapable of forming myoblasts. Infection of CD45+:Sca1+ cells from uninjured muscle with retrovirus expressing Pax7 efficiently activated the myogenic program. The resulting myoblasts expressed Myf5 and MyoD and differentiated into myotubes that expressed myogenin and myosin heavy chain. Infection of CD45−:Sca1− cells from Pax7 −/− muscle similarly gave rise to myoblasts. Notably, infection of Pax7-deficient muscle with adenoviral Pax7 resulted in the de novo formation of regenerated myofibers. Taken together, these results indicate that Pax7 is necessary and sufficient to induce the myogenic specification of CD45+ stem cells resident in adult skeletal muscle. Moreover, these experiments suggest that viral transduction of Pax7 is a potential therapeutic approach for the treatment of neuromuscular degenerative diseases.

Partial Text: Skeletal muscle regeneration has long been considered to be mediated solely by monopotential skeletal muscle stem cells known as satellite cells (Bischoff 1994; Charge and Rudnicki 2004). However, recent studies have identified novel populations of adult stem cells in skeletal muscle. For example, “side-population” (SP) cells isolated from muscle tissue participate in the regeneration of skeletal muscle and give rise to satellite cells (Gussoni et al. 1999; Asakura et al. 2002). In vitro, muscle SP cells readily form hematopoietic colonies, but do not spontaneously differentiate into muscle cells unless cocultured with satellite-cell-derived myoblasts (Asakura et al. 2002).

In this article, we demonstrate that expression of Pax7 induces the myogenic specification of CD45+ muscle-derived adult stem cells. First, CD45+:Sca1+ cells isolated from regenerating Pax7 −/− muscle were incapable of undergoing myogenic specification (see Figure 1). Second, expression of Pax7 with viral vectors in CD45+:Sca1+ cells purified from uninjured muscle promoted the formation of highly proliferative myoblasts that readily differentiated as multinucleated myotubes (see Figures 2 and 3). CD45+:Sca1+ cells engineered to express Pax7 (CDSC-Pax7) also differentiated in vivo, readily contributing to the regeneration of dystrophic muscle (see Figure 5). Lastly, Ad-Pax7 gene delivery into chemically damaged Pax7 −/− muscle resulted in the efficient de novo generation of myofibers in the absence of endogenous satellite cells. Taken together, these data unequivocally establish that Pax7 plays a key regulatory role for directing myogenic specification in some populations of adult stem cells during regenerative myogenesis. Moreover, these results emphasize the possibility of designing strategies to upregulate or ectopically express Pax7 in stem cells for the treatment of muscle degenerative diseases.



0 0 vote
Article Rating
Notify of
Inline Feedbacks
View all comments