Research Article: Predicting the Kinetic Properties Associated with Redox Imbalance after Oxidative Crisis in G6PD-Deficient Erythrocytes: A Simulation Study

Date Published: September 28, 2011

Publisher: Hindawi Publishing Corporation

Author(s): Hanae Shimo, Taiko Nishino, Masaru Tomita.

http://doi.org/10.1155/2011/398945

Abstract

It is well known that G6PD-deficient individuals are highly susceptible to oxidative stress. However, the differences in the degree of metabolic alterations among patients during an oxidative crisis have not been extensively studied. In this study, we applied mathematical modeling to assess the metabolic changes in erythrocytes of various G6PD-deficient patients during hydrogen peroxide- (H2O2-) induced perturbation and predict the kinetic properties that elicit redox imbalance after exposure to an oxidative agent. Simulation results showed a discrepancy in the ability to restore regular metabolite levels and redox homeostasis among patients. Two trends were observed in the response of redox status (GSH/GSSG) to oxidative stress, a mild decrease associated with slow recovery and a drastic decline associated with rapid recovery. The former was concluded to apply to patients with severe clinical symptoms. Low Vmax and high KmG6P of G6PD were shown to be kinetic properties that enhance consequent redox imbalance.

Partial Text

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-chromosome linked genetic disorder, is the most prevalent mutation in humans affecting more than 400 million people worldwide [1–4]. It is characterized by the decreased activity of the G6PD enzyme, which is the central factor of the antioxidant defense system in erythrocytes (or RBCs). The enzyme is responsible for maintaining the high levels of reduced glutathione (GSH) and nicotine adenine dinucleotide phosphate (NADPH) that protect the cell from oxidative damage caused by harmful reactive oxygen species (ROS).

The experimental workflow is presented schematically in Figure 1.

Deficiency in G6PD activity, and hence a disturbance in redox homeostasis, can lead to severe complications during the induction of an oxidative agent if not properly diagnosed (e.g., [25, 26]). Therefore, the preclinical assessment of the degree of metabolic dysfunction in a patient undergoing oxidative stress has been the focus of many past studies of G6PD deficiency [20, 27–29]. Although there have been several studies aiming at the mathematical representation and simulation of the metabolism in patients with G6PD deficiency [20, 30–32], no studies have sought to interpret the pathways for drug-induced ROS production or determine the kinetic properties that make G6PD-deficient RBCs suffer exceptionally from critical redox imbalance after acute exposure to an oxidative agent. In this study, we examined the metabolic changes in G6PD-deficient RBCs during exposure to H2O2 using a model that reproduced the oxidative-stress removal mechanism and evaluated how the alterations in redox homeostasis depend on the combination of kinetic parameters for enzymatic reactions in a patient’s RBCs.

In conclusion, we successfully constructed a dynamic model to represent the metabolic alterations in G6PD-deficient RBCs during exposure to oxidative stress induced by H2O2. We conclude that low initial GSH/GSSG is linked with mild decrease and delay in the recovery of the steady state GSH/GSSG after induction of an oxidative agent, and patients having this trait are susceptible to severe clinical symptoms. Furthermore, we conclude that recovering abilities do not rely on a single kinetic parameter such as Vmax. Our simulation results predicted a higher redox imbalance following oxidative damage in patients with low Vmax and high KmG6P. In a disorder with more than 400 biochemical variants exhibiting distinct clinical manifestations [3, 29], in which the quick screening of a large number of patients requires complicated and expensive tests that may give abnormal results [13, 44, 45], in silico experiments such as those presented here will likely be significant for the accessible prediction of severity in pathophysiological conditions in patients without actual in vivo experimental procedures. We anticipate that our studies will also provide novel insights that will facilitate the implementation of mathematical analysis and simulation for better patient diagnosis in the future.

 

Source:

http://doi.org/10.1155/2011/398945

 

Leave a Reply

Your email address will not be published.