Research Article: QTL/microarray approach using pathway information

Date Published: January 15, 2012

Publisher: BioMed Central

Author(s): Hirokazu Matsuda, Yukio Taniguchi, Hiroaki Iwaisaki.

http://doi.org/10.1186/1748-7188-7-1

Abstract

A combined quantitative trait loci (QTL) and microarray-based approach is commonly used to find differentially expressed genes which are then identified based on the known function of a gene in the biological process governing the trait of interest. However, a low cutoff value in individual gene analyses may result in many genes with moderate but meaningful changes in expression being missed.

We modified a gene set analysis to identify intersection sets with significantly affected expression for which the changes in the individual gene sets are less significant. The gene expression profiles in liver tissues of four strains of mice from publicly available microarray sources were analyzed to detect trait-associated pathways using information on the QTL regions of blood concentrations of high density lipoproteins (HDL) cholesterol and insulin-like growth factor 1 (IGF-1). Several metabolic pathways related to HDL levels, including lipid metabolism, ABC transporters and cytochrome P450 pathways were detected for HDL QTL regions. Most of the pathways identified for the IGF-1 phenotype were signal transduction pathways associated with biological processes for IGF-1’s regulation.

We have developed a method of identifying pathways associated with a quantitative trait using information on QTL. Our approach provides insights into genotype-phenotype relations at the level of biological pathways which may help to elucidate the genetic architecture underlying variation in phenotypic traits.

Partial Text

In the last decade, a large number of quantitative trait loci (QTL) have been mapped in various organisms, and positional information on QTL is already included in resources such as Online Mendelian Inheritance in Man [1], Mouse Genome Database [2] and AnimalQTLdb [3]. Most previously reported QTL were detected by linkage analyses, but mapping resolutions were too low to identify underlying genes or causative mutations by direct experiments (i.e., the confidence intervals often span tens of map units that contain dozens to hundreds of genes). On the other hand, microarray-based gene expression profiling can be used to discover genes related to a quantitative trait of interest [4]. Combining information on QTL with microarray data enables genes underlying genetically complex traits to be linked to QTL regions. Wayne and McIntyre (2002) [5] proposed the QTL/microarray approach to discover candidate genes. Typically, differentially expressed genes within a QTL region are identified, and candidates revealed based on the known function of a gene in the biological process governing the trait of interest. Because selections are based on limited pre-existing information on what processes may be involved, the nomination of candidate genes is biased [6]. This simplistic approach focuses on gene discovery, which does not provide functional links between biological processes and traits. A low cutoff value in the individual gene analyses (IGAs) may result in many genes with moderate but meaningful changes in expression being missed, leading to a reduction in statistical power [7,8].

The Mouse Phenome Database (MPD) [15] has developed standards for the deposition of phenotypic data on mice including strain purity, study design, animal age and statistical power. Table 1 shows phenotypic information on male mice for the C3H/HeJ (C3H), C57BL/6J (B6), NZB/BlNJ (NZB) and SM/J (SM) strains from MPD. Measurements are tabulated by strain, sex, strain means, standard deviation and standard error. The plasma high-density lipoprotein (HDL) concentrations of B6 and SM mice were lower than those of C3H and NZB mice. For serum insulin-like growth factor 1 (IGF-1) levels, strains B6 and SM show lower phenotypic values than C3H and NZB mice. Our preliminary study based on the collection of phenotypic data indicated the possibility of identifying genetic differences. For this reason, the present study focuses on comparisons between strains showing high and low phenotypes and identifying significantly (false discovery rate (FDR) < 0.05 and the sub-pathway would be more significant than the whole pathway) altered pathways that are common to the comparisons for each trait. In this study, we have developed a method of identifying pathways that are associated with quantitative traits using information on QTL. In the application of our approach to the data on mouse inbred strains, the metabolic pathways for HDL cholesterol trait and the IGF-1 related signaling pathways were clearly detected. Our approach provides insights into genotype-phenotype relations at the level of biological pathways which may help to elucidate the genetic architecture underlying the variation in phenotypic traits. The method presented here is also useful for identifying positional candidate genes in the QTL region through the detection of trait-associated pathways. Once trait-associated pathways are detected, differentially expressed genes that share the pathways would be promising candidates, even if the genes are outside the QTL region. eQTL: expression quantitative trait loci; FDR: false discovery rate; GEO: gene expression omnibus; GSA: gene set analysis; GWAS: genome wide association studies; HDL: high density lipoproteins; IGA: individual gene analysis; IGF-1: insulin-like growth factor 1; KEGG: Kyoto encyclopedia of genes and genomes; MGI: Mouse Genome Informatics; MPD: Mouse Phenome Database; QTL: quantitative trait locus; RMA: Robust Multi-array Average method. The authors declare that they have no competing interests. HM conceived of this study, developed and implemented the statistical analysis, drafted the manuscript. YT supported the design of the experiments and the interpretation of the results. HI coordinated the study and contributed in writing the manuscript. All authors read and approved the final manuscript.   Source: http://doi.org/10.1186/1748-7188-7-1

 

Leave a Reply

Your email address will not be published.