Research Article: Rapid customization system for 3D-printed splint using programmable modeling technique – a practical approach

Date Published: May 25, 2018

Publisher: Springer International Publishing

Author(s): Jianyou Li, Hiroya Tanaka.


Traditional splinting processes are skill dependent and irreversible, and patient satisfaction levels during rehabilitation are invariably lowered by the heavy structure and poor ventilation of splints. To overcome this drawback, use of the 3D-printing technology has been proposed in recent years, and there has been an increase in public awareness. However, application of 3D-printing technologies is limited by the low CAD proficiency of clinicians as well as unforeseen scan flaws within anatomic models.

Manual modeling steps involved in complex splint designs have been programed into the proposed automatic system. Clinicians define the splinting region by drawing two curves, thereby obtaining the final model within minutes. The proposed system is capable of automatically patching up minor flaws within the limb model as well as calculating the thickness and lattice density of various splints. Large splints could be divided into three parts for simultaneous multiple printing.

This study highlights the advantages, limitations, and possible strategies concerning application of programmable modeling tools in clinical processes, thereby aiding clinicians with lower CAD proficiencies to become adept with splint design process, thus improving the overall design efficiency of 3D-printed splints.

Partial Text

Upper-limb splints are employed in the treatment of immobilizing fractures, congenital deformities, and chronically degenerating orthopedic conditions. Plaster and thermoplastic sheets are primary materials employed in conventional fracture immobilization treatments. During the splinting process, the splint-fitting effect is greatly dependent on the skill and experience of the clinician because of the irreversibility of these materials and body-based contact models. Consequently, patient satisfaction levels during treatment also significantly vary depending on the clinician’s skill when performing splinting [1–3]. Inexperienced fitters may cause more pain or lead to poor immobilization. In addition, conventional splints are bulky and unsightly, thereby causing an obvious inconvenience to patients during treatment. Maintaining splints clean and dry is difficult: hence, the risk of infection spread also increases [3, 4].

This section presents operational guidelines to simply tasks involved at the 3D-scanning stage. Detailed steps and procedures followed in the development of the proposed automatic system for splint design through use of a programmable modeling tool, to address problems encountered during other stages, have also been discussed.

Based on the proposed approach and subsequent verifications preformed in this study, a detailed description of the performance has been provided as well as related limitations have been discussed and addressed.

This study proposes a programmable modeling tool for splint customization to overcome scanning- and modeling-process-related problems encountered during a digitized process. For designers and engineers interested in the development of similar systems, the study demonstrates the exact step-by-step building process and describes the necessary modeling logic, possible issues caused by scanning flaws, and corresponding solutions. A comprehensive discussion of the calculation process enables one to realize how the system determines splint thickness, lattice-structure pattern, and assembly method to response to requirements of different limbs wjilst reducing the overall process duration. The study also facilitates clinicians to accomplish splint designs within few minutes through use of the semi-automatic tool without the need for prior CAD knowledge and/or post-production skills. Although the proposed method reduces the duration of 3D-scanning, CAD manipulation, and printing stages to a few hours, the total duration of the design process still exceeds that of transitional splinting, which can be accomplished within 20 min. Therefore, design-development and generation of simple prefabricated splints must be considered for providing immediate and temporary immobilization before 3D-printed splints could be made available.




Leave a Reply

Your email address will not be published.