Research Article: Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences

Date Published: August 17, 2004

Publisher: Public Library of Science

Author(s): Rick S Mitchell, Brett F Beitzel, Astrid R. W Schroder, Paul Shinn, Huaming Chen, Charles C Berry, Joseph R Ecker, Frederic D Bushman

Abstract: The completion of the human genome sequence has made possible genome-wide studies of retroviral DNA integration. Here we report an analysis of 3,127 integration site sequences from human cells. We compared retroviral vectors derived from human immunodeficiency virus (HIV), avian sarcoma-leukosis virus (ASLV), and murine leukemia virus (MLV). Effects of gene activity on integration targeting were assessed by transcriptional profiling of infected cells. Integration by HIV vectors, analyzed in two primary cell types and several cell lines, strongly favored active genes. An analysis of the effects of tissue-specific transcription showed that it resulted in tissue-specific integration targeting by HIV, though the effect was quantitatively modest. Chromosomal regions rich in expressed genes were favored for HIV integration, but these regions were found to be interleaved with unfavorable regions at CpG islands. MLV vectors showed a strong bias in favor of integration near transcription start sites, as reported previously. ASLV vectors showed only a weak preference for active genes and no preference for transcription start regions. Thus, each of the three retroviruses studied showed unique integration site preferences, suggesting that virus-specific binding of integration complexes to chromatin features likely guides site selection.

Partial Text: Retroviral replication requires reverse transcription of the viral RNA genome and integration of the resulting DNA copy into a chromosome of the host cell. A topic of long standing interest has been the chromosomal and nuclear features dictating the location of integration target sites (reviewed in Coffin et al. 1997; Bushman 2001). Integration site selection has also gained increased interest because of its importance for human gene therapy. Retroviral vectors have been used extensively to deliver therapeutic genes carried in retroviral backbones. However, retroviral integration can take place at many locations in the genome, on occasion resulting in insertional activation of oncogenes (reviewed in Coffin et al. 1997; Bushman 2001). Recently, two patients undergoing gene therapy for X-linked severe combined immunodeficiency developed leukemia-like illnesses associated with integration of a therapeutic retroviral vector in or near the LMO2 proto-oncogene (Check 2002; Hacein-Bey-Abina et al. 2003). Insertional activation of oncogenes by retroviral vectors has also been detected in animal models (Li et al. 2002).

We report that ASLV, MLV, and HIV have quite different preferences for integration sites in the human chromosomes. HIV strongly favors active genes in primary cells as well as in transformed cell lines. MLV favors integration near transcription start regions and favors active genes only weakly. ASLV shows the weakest bias toward integration in active genes and no favoring of integration near transcription start sites. We expect that these same patterns will be seen for MLV and ASLV integration in different human cell types, because all four HIV datasets yielded similar results, though more data on additional cell and tissue types will be helpful to further evaluate the generality.

Source:

http://doi.org/10.1371/journal.pbio.0020234

 

0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments