Research Article: Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium

Date Published: April 25, 2018

Publisher: Springer Berlin Heidelberg

Author(s): Chongyang Wang, Yong Huang, Zuotao Zhang, Hui Wang.

http://doi.org/10.1186/s13568-018-0594-3

Abstract

With the close relationship between saline environments and industry, polycyclic aromatic hydrocarbons (PAHs) accumulate in saline/hypersaline environments. Therefore, PAHs degradation by halotolerant/halophilic bacteria has received increasing attention. In this study, the metabolic pathway of phenanthrene degradation by halophilic consortium CY-1 was first studied which showed a single upstream pathway initiated by dioxygenation at the C1 and C2 positions, and at several downstream pathways, including the catechol pathway, gentisic acid pathway and protocatechuic acid pathway. The effects of salinity on the community structure and expression of catabolic genes were further studied by a combination of high-throughput sequencing, catabolic gene clone library and real-time PCR. Pure cultures were also isolated from consortium CY-1 to investigate the contribution made by different microbes in the PAH-degrading process. Marinobacter is the dominant genus that contributed to the upstream degradation of phenanthrene especially in high salt content. Genus Halomonas made a great contribution in transforming intermediates in the subsequent degradation of catechol by using catechol 1,2-dioxygenase (C12O). Other microbes were predicted to be mediating bacteria that were able to utilize intermediates via different downstream pathways. Salinity was investigated to have negative effects on both microbial diversity and activity of consortium CY-1 and consortium CY-1 was found with a high degree of functional redundancy in saline environments.

Partial Text

Polycyclic aromatic hydrocarbons (PAHs) are wide spread petroleum pollutants that consist of two or more fused benzene rings (Haritash and Kaushik 2009). In recent years, because of the close association between saline/hypersaline environments and the petroleum industry, PAHs are found to accumulate in such environments (Debajyoti et al. 2016). Given the hyperosmosis and decreased bioavailability of PAHs, biodegradation in saline/hypersaline environments is quite difficult for traditional mesophilic microorganisms (Arulazhagan et al. 2014; Feng et al. 2012). Therefore, halotolerant and halophilic PAH-degrading microbes that show high activity in hypersaline environments have attracted increasing attention in recent years (Debajyoti et al. 2016).

Although several bacterial isolates, such as Pseudomonas spp., Sphingomonas spp., and Burkholderia spp. (Haritash and Kaushik 2009; Waigi et al. 2015), were found to be able to completely mineralize PAHs by themselves, the cooperation among different bacterial species was the most important way to remove PAHs from the environment, which made it important to study PAHs biodegradation by bacteria mixtures, especially in hypersaline environments (Arulazhagan and Vasudevan 2009; Dastgheib et al. 2012; Zhao et al. 2016). Although PAHs degradation by microbe associations rather than by isolates was in accord with PAHs degradation in environments, reports are still limited regarding the metabolic mechanism of a halophilic phenanthrene-degrading consortium. As the produced metabolic intermediates could be used as substrates by other microbes, pathways of a PAH-degrading consortium were expected to be more complex than for PAH-degrading individuals. Based on the identification of metabolites, the metabolic pathway of consortium CY-1 was illustrated with a simple phenanthrene-degrading upstream pathway and several downstream pathways via catechol, gentisic acid and protocatechuic acid (Fig. 3). The produced catechol, gentisic acid and protocatechuic acid was further ring-cleaved by C12O, C23O, G12O, and P34O. The existence of various downstream pathways could help to rapidly transform intermediates and promote phenanthrene degradation by removing the toxicity generated by the accumulation of the produced intermediates (Gupta et al. 2016; Janbandhu and Fulekar 2011).

 

Source:

http://doi.org/10.1186/s13568-018-0594-3

 

Leave a Reply

Your email address will not be published.