Research Article: Self-monitoring of blood pressure in hypertension: A systematic review and individual patient data meta-analysis

Date Published: September 19, 2017

Publisher: Public Library of Science

Author(s): Katherine L. Tucker, James P. Sheppard, Richard Stevens, Hayden B. Bosworth, Alfred Bove, Emma P. Bray, Kenneth Earle, Johnson George, Marshall Godwin, Beverly B. Green, Paul Hebert, F. D. Richard Hobbs, Ilkka Kantola, Sally M. Kerry, Alfonso Leiva, David J. Magid, Jonathan Mant, Karen L. Margolis, Brian McKinstry, Mary Ann McLaughlin, Stefano Omboni, Olugbenga Ogedegbe, Gianfranco Parati, Nashat Qamar, Bahman P. Tabaei, Juha Varis, Willem J. Verberk, Bonnie J. Wakefield, Richard J. McManus, Kazem Rahimi

Abstract: BackgroundSelf-monitoring of blood pressure (BP) appears to reduce BP in hypertension but important questions remain regarding effective implementation and which groups may benefit most. This individual patient data (IPD) meta-analysis was performed to better understand the effectiveness of BP self-monitoring to lower BP and control hypertension.Methods and findingsMedline, Embase, and the Cochrane Library were searched for randomised trials comparing self-monitoring to no self-monitoring in hypertensive patients (June 2016). Two reviewers independently assessed articles for eligibility and the authors of eligible trials were approached requesting IPD. Of 2,846 articles in the initial search, 36 were eligible. IPD were provided from 25 trials, including 1 unpublished study. Data for the primary outcomes—change in mean clinic or ambulatory BP and proportion controlled below target at 12 months—were available from 15/19 possible studies (7,138/8,292 [86%] of randomised participants). Overall, self-monitoring was associated with reduced clinic systolic blood pressure (sBP) compared to usual care at 12 months (−3.2 mmHg, [95% CI −4.9, −1.6 mmHg]). However, this effect was strongly influenced by the intensity of co-intervention ranging from no effect with self-monitoring alone (−1.0 mmHg [−3.3, 1.2]), to a 6.1 mmHg (−9.0, −3.2) reduction when monitoring was combined with intensive support. Self-monitoring was most effective in those with fewer antihypertensive medications and higher baseline sBP up to 170 mmHg. No differences in efficacy were seen by sex or by most comorbidities. Ambulatory BP data at 12 months were available from 4 trials (1,478 patients), which assessed self-monitoring with little or no co-intervention. There was no association between self-monitoring and either lower clinic or ambulatory sBP in this group (clinic −0.2 mmHg [−2.2, 1.8]; ambulatory 1.1 mmHg [−0.3, 2.5]). Results for diastolic blood pressure (dBP) were similar. The main limitation of this work was that significant heterogeneity remained. This was at least in part due to different inclusion criteria, self-monitoring regimes, and target BPs in included studies.ConclusionsSelf-monitoring alone is not associated with lower BP or better control, but in conjunction with co-interventions (including systematic medication titration by doctors, pharmacists, or patients; education; or lifestyle counselling) leads to clinically significant BP reduction which persists for at least 12 months. The implementation of self-monitoring in hypertension should be accompanied by such co-interventions.

Partial Text: Treatment of hypertension results in significant reductions in risk of subsequent cardiovascular disease [1,2]. Despite strong evidence for such treatment, international epidemiological studies suggest that many people remain suboptimally controlled [3]. Self-monitoring of blood pressure (BP), where individuals measure their own blood pressure, usually in a home environment, can improve BP control and is an increasingly common part of hypertension management. Such monitoring can be accompanied by additional support such as from a nurse or pharmacist [4].

This study systematically reviewed the existing literature to identify randomised trials examining the efficacy of self-monitoring of BP compared to control. Authors of all eligible trials were approached for access to IPD. A protocol with detailed methods has been published previously [15]. The methods used are summarised below.

Of 2,846 unique studies from the combined searches, 132 were assessed in full and 36 studies were deemed potentially eligible (S1 Fig). One study which would otherwise have been eligible was excluded because the comparator group used ambulatory monitoring to guide treatment, a control intervention that had not been anticipated in the protocol but which was not comparable to any other included studies [30]. Of the 36 potentially eligible studies, 19 had published data at 12 months, the primary outcome. Authors from 24 of the potentially eligible studies provided IPD, with 1 group submitting additional data from an unpublished study. These 25 studies were published from 2005–2014, were conducted in North America and Europe (11 United States; 6 United Kingdom; 3 Italy; 1 each from the Netherlands, Australia, Spain, Finland, and Canada), and included a wide range of self-monitoring protocols, co-interventions, and populations (Table 1) [23–27,31–48]. Authors from the remaining 12 studies were either unable to provide IPD (2 studies) or did not respond to the request for data (10 studies). Four studies which followed up patients for 12 months did not provide IPD, so that data for the primary outcome were available from 15/19 studies (7,138/8,292 [86%], of potential participants) (S2 Table) [17,18,22,49]. A total of 838 patients (12%) were lost to follow-up across all included studies, and a further 227 patients from the potentially available studies were lost to follow-up, leaving 6,300/7,227 patients (87%) for inclusion in the final analysis of the primary outcome (12 months follow-up).

Source:

http://doi.org/10.1371/journal.pmed.1002389

 

Leave a Reply

Your email address will not be published.