Research Article: Simulated impacts of ankle foot orthoses on muscle demand and recruitment in typically-developing children and children with cerebral palsy and crouch gait

Date Published: July 13, 2017

Publisher: Public Library of Science

Author(s): Michael Rosenberg, Katherine M. Steele, Steven Allen Gard.


Passive ankle foot orthoses (AFOs) are often prescribed for children with cerebral palsy (CP) to assist locomotion, but predicting how specific device designs will impact energetic demand during gait remains challenging. Powered AFOs have been shown to reduce energy costs of walking in unimpaired adults more than passive AFOs, but have not been tested in children with CP. The goal of this study was to investigate the potential impact of powered and passive AFOs on muscle demand and recruitment in children with CP and crouch gait. We simulated gait for nine children with crouch gait and three typically-developing children with powered and passive AFOs. For each AFO design, we computed reductions in muscle demand compared to unassisted gait. Powered AFOs reduced muscle demand 15–44% compared to unassisted walking, 1–14% more than passive AFOs. A slower walking speed was associated with smaller reductions in absolute muscle demand for all AFOs (r2 = 0.60–0.70). However, reductions in muscle demand were only moderately correlated with crouch severity (r2 = 0.40–0.43). The ankle plantarflexor muscles were most heavily impacted by the AFOs, with gastrocnemius recruitment decreasing 13–73% and correlating with increasing knee flexor moments (r2 = 0.29–0.91). These findings support the potential use of powered AFOs for children with crouch gait, and highlight how subject-specific kinematics and kinetics may influence muscle demand and recruitment to inform AFO design.

Partial Text

Crouch gait, characterized by excessive knee flexion during stance, is one of the most common gait patterns among individuals with cerebral palsy (CP) [1]. Children with CP expend significantly more energy to walk than their typically-developing (TD) peers [2], which can hinder participation in activities of daily life. Increased knee flexion during crouch gait increases the muscle force required to support and propel the body [3–5], contributing to increased energy costs [6]. While many treatments aim to improve crouch gait, ankle foot orthoses (AFOs) remain one of the most common interventions. AFOs are often prescribed for children with CP to improve gait kinematics, prevent bone deformities, and potentially reduce energy costs of walking [7, 8]. However, there are many different types of AFOs and their potential to reduce energy costs of walking remains unclear.

We simulated the effects of passive and powered AFOs on muscle demand and recruitment during walking in TD children and children with CP and crouch gait. We hypothesized that powered AFOs would reduce leg impulse more than passive AFOs. The simulation results supported this hypothesis, with leg impulse being reduced 1–15% more with powered AFOs than passive AFOs, supporting the potential use of powered AFOs as assistive devices for CP. Unlike passive AFOs, powered AFO torque profiles are independent of ankle kinematics which increases the ability to customize torque profiles to an individual’s gait pattern. We also found, as anticipated, that all AFO designs primarily impacted the ankle plantarflexor muscles; however, reductions in muscle impulse were only moderately correlated with crouch severity, emphasizing the diverse factors that influence an AFO’s impact on muscle demand, even among children with similar gait patterns.

Optimizing the design of powered or passive AFOs has the potential to reduce muscle demand and improve metabolic efficiency for children with CP, even without changes in an individual’s gait pattern. These changes are clinically important because children with CP have inefficient gait patterns compared to TD peers and optimizing AFOs to reduce energy costs may reduce fatigue and increase participation in daily life. Musculoskeletal simulation provides a platform to evaluate and test AFO designs and inform training by predicting optimal patterns of muscle recruitment. Although crouch gait represents one of the most common gait pathologies in CP [1], many other common gait pathologies exist that could benefit from similar analyses. Further understanding of the role of concomitant impairments such as muscle weakness, spasticity, or contracture represent important areas for future investigation. To encourage expansion of musculoskeletal simulation to assistive device applications, we have made our simulations available for others to use and build upon ( Adaptation to and optimization of AFOs remain challenging topics [9, 52], and future work comparing predictions with experimental tests will further enhance these methods. This study informs future clinical design and prescription of AFOs for children with CP and motivates further investigation into powered AFOs as assistive devices for children with CP.




0 0 vote
Article Rating
Notify of
Inline Feedbacks
View all comments