Research Article: Simulation of semilunar valve function: computer-aided design, 3D printing and flow assessment with MR

Date Published: February 3, 2020

Publisher: Springer International Publishing

Author(s): Nabil Hussein, Pascal Voyer-Nguyen, Sharon Portnoy, Brandon Peel, Eric Schrauben, Christopher Macgowan, Shi-Joon Yoo.

http://doi.org/10.1186/s41205-020-0057-8

Abstract

The structure of the valve leaflets and sinuses are crucial in supporting the proper function of the semilunar valve and ensuring leaflet durability. Therefore, an enhanced understanding of the structural characteristics of the semilunar valves is fundamental to the evaluation and staging of semilunar valve pathology, as well as the development of prosthetic or bioprosthetic valves. This paper illustrates the process of combining computer-aided design (CAD), 3D printing and flow assessment with 4-dimensional flow magnetic resonance imaging (MRI) to provide detailed assessment of the structural and hemodynamic characteristics of the normal semilunar valve.

Previously published geometric data on the aortic valve was used to model the ‘normal’ tricuspid aortic valve with a CAD software package and 3D printed. An MRI compatible flow pump with the capacity to mimic physiological flows was connected to the phantom. A peak flow rate of 100 mL/s and heart rate of 60 beats per minute were used. MRI measurements included cine imaging, 2D and 4D phase-contrast imaging to assess valve motion, flow velocity and complex flow patterns.

Cine MRI data showed normal valve function and competency throughout the cardiac cycle in the 3D-printed phantom. Quantitative analysis of 4D Flow data showed net flow through 2D planes proximal and distal to the valve were very consistent (26.03 mL/s and 26.09 mL/s, respectively). Measurements of net flow value agreed closely with the flow waveform provided to the pump (27.74 mL/s), confirming 4D flow acquisition in relation to the pump output. Peak flow values proximal and distal to the valve were 78.4 mL/s and 63.3 mL/s, respectively.

In this proof of concept study, we have demonstrated the ability to generate physiological 3D-printed aortic valve phantoms and evaluate their function with cine- and 4D Flow MRI. This technology can work synergistically with promising tissue engineering research to develop optimal aortic valve replacements, which closely reproduces the complex function of the normal aortic valve.

Partial Text

The aortic and pulmonary valves are collectively called the semilunar valves as they consist of three semilunar shaped leaflets that show a gentle concave curvature when viewed from above. These valves are contained within the arterial root, which has three visible round outward protrusions called the sinuses of Valsalva. The structure of both the valve leaflets and sinuses are crucial in supporting the proper function of the semilunar valve and ensuring durability of the valve leaflets, which open and close approximately 100,000 times daily without any resting period. An enhanced understanding of the structural characteristics of the semilunar valves is therefore fundamental to the evaluation and staging of semilunar valve pathology, as well as the development of prosthetic or bioprosthetic valves. We hypothesized that a combination of computer-aided design (CAD), 3D printing and flow assessment with magnetic resonance imaging (MRI) would provide an unprecedented opportunity for detailed assessment of the structural and hemodynamic characteristics of both normal semilunar valves and pathologic conditions such as isolated aortic and pulmonary valve diseases and connective tissue diseases affecting the arterial roots. This paper illustrates the process of CAD and 3D printing of a semilunar valve phantom and the assessment of valve function using 4-dimensional (4D) flow MRI.

Previously published data using either pathology specimens or medical imaging were used to model the structure of the ‘normal’ tricuspid aortic valve with a CAD software package (SolidWorks, Waltham, Massachusetts, USA) (Figs. 1, 2) [1–7]. The design of the aortic root incorporated the sinuses of Valsalva, sinotubular junction, and ascending aorta. A cylinder with the dimension of the distal left ventricular outflow tract was modeled to complete the aortic valve phantom (Fig. 3).
Fig. 1Normal tricuspid aortic valve modelled using computer aided design based on geometry obtained from literature. a Superior view looking down the ascending aorta to visualize the aortic valve leaflets. b Lateral view of aortic valve phantom incorporating aortic root structuresFig. 22D sketches of aortic root and valve leaflet geometry (mm). a Coronal view of the aortic root. Wall thickness 2 mm. b Cross-sectional View of aortic root. c Lateral view of aortic root. d Lateral view of valve leaflet. e Frontal view of valve leaflet. f Superior view of valve leafletFig. 3Top Panel: 3D printed tricuspid aortic valve phantom. a Superior view looking down the ascending aorta to visualize the aortic valve leaflets. b Inferior view looking up the left ventricular outflow tract to the base of the closed valve. c Lateral view of aortic valve phantom incorporating aortic root structures. Bottom Panel: Piping connected to phantom which attaches to the physiological MRI compatible pump. Red arrows show the direction of flow through the phantom

A live video recording demonstrating the function of the 3D printed valve is provided in Fig. 5 (and Additional file 1: Video S1). Valve opening and closure during systole and diastole, respectively, is clearly visualized.
Fig. 5View from above the 3D printed aortic valve demonstrating the valve closing and opening in response to pulsatile flow. a Valve leaflets closing during diastole. b Valve leaflets opening during systole. (Corresponding video files attached – Additional file 1: Video S1)

The semilunar valves are uniquely structured to open and close without the aid of the chords and papillary muscles. The tricuspid semilunar valve with properly sized and shaped sinuses of Valsalva appears to be the ideal configuration for optimal hemodynamics, compared to mono or bicuspid variants [4, 8–10]. Any alteration in the number of valve leaflets, the size of the valve annulus and the size and shape of the sinuses may result in inadequate flow or turbulence across the valvular orifice and damage to the valve leaflets. Both aortic and pulmonary valve diseases are not uncommon and require replacement of the diseased valve with a prosthetic or bioprosthetic valve through surgery or intervention [11–13]..

In this proof of concept study, we have demonstrated the ability to use existing geometric aortic valve data to generate physiological 3D-printed aortic valve phantoms and evaluate their function with cine- and 4D Flow MRI. This methodology could be used to improve our understanding of the function of the semilunar valves and develop the correct geometry to achieve optimal flow dynamics. It also supports quantitative assessment of specific factors affecting valve function, such as the number of valve leaflets, the configuration of the sinuses of Valsalva, dilatation of the aortic root or pulmonary trunk and coronary artery perfusion during leaflet coaptation. This technology can work synergistically with the promising tissue engineering research in the quest to develop optimal aortic valve replacements, which most closely reproduces the complex function of the normal aortic valve.

 

Source:

http://doi.org/10.1186/s41205-020-0057-8

 

Leave a Reply

Your email address will not be published.