Research Article: Testing Strategies for Detection of Xenotropic Murine Leukemia Virus-Related Virus Infection

Date Published: July 28, 2011

Publisher: Hindawi Publishing Corporation

Author(s): Shixing Tang, Indira K. Hewlett.

http://doi.org/10.1155/2011/281425

Abstract

Xenotropic murine leukemia virus-related virus (XMRV) is a newly identified gamma retrovirus and may be associated with prostate cancer- (PC) and chronic fatigue syndrome (CFS). Since its identification in 2006 and detection of polytropic murine lenkemia virus (MLV)-like sequences in CFS patients in 2010, several test methods including nucleic acid testing methods and serological assays have been developed for detection of XMRV and/or MLV-like sequences. However, these research assays have not yet been validated and evaluated due to the lack of well-characterized reference materials. Mouse DNA contamination should be carefully checked when testing human specimens in order to avoid false-positive detection of XMRV or MLV-like sequences.

Partial Text

When XMRV was first identified in PC patients in 2006 [1], it did not get much public attention until a science paper published in 2009 reported its detection in a majority (67%) of CFS patients and about 4% of healthy Americans [2]. In this report, XMRV was shown to be infectious and could be isolated from peripheral mononuclear cells (PBMCs) and plasma, indicating that it is the first gamma retrovirus that infects humans and may be associated with human diseases [1, 2]. Furthermore, if confirmed, it was thought that millions of persons worldwide may harbor the new virus and thus pose a serious concern to public health and the safety of blood transfusion and organ transplantation. These findings greatly stimulated the interest of scientists in academia and government agencies to address both public health and scientific concerns about the newly identified retrovirus and its possible association with human diseases. However, the studies that followed the original publications have yielded conflicting findings and generated more controversy than consensus about XMRV detection and its potential disease association (see reviews [3–11]). In 2010, Lo et al. reported the detection of polytropic MLV-like sequences in 87% of CFS patients [12]. MLV-like sequences are different from, but very similar to, XMRV [12]. The detection of polytropic MLV in CFS patients suggested that XMRV may be only one of an apparent cluster of MLV-like viruses identified in patient specimens. In this paper, we describe and summarize the various testing methods and assays that have been employed for detection of XMRV and/or MLV-like virus infection in the studies that have been published until the present time.

A variety of test methods have been employed to detect XMRV in cell culture studies and clinical specimens. Polymerase chain reaction (PCR) assay (nested and real-time PCR), transcription-mediated amplification assay (TMA), and fluorescence in situ hybridization (FISH) have been used for direct detection of viral sequences. Several serologic assays for detection of circulating antibodies against XMRV have been reported, including flow cytometry (FACS), Western blot (WB), chemiluminescence-based immunoassays and enzyme linked immunosorbent assay (ELISA), and so forth. Immunohistochemical staining (IHC) has been used for direct detection of viral proteins, while cell culture assays were used for isolation and detection of infectious virus.

Currently, there are no commercially available FDA approved/licensed tests for detection of XMRV or other MLV-related human retroviruses. Standards for the diagnosis of XMRV or MLV-related retrovirus infection based on laboratory test methods have not been established. The relative sensitivity and specificity of various assay methodologies and strategies (i.e., NAT, serology, and culture) have not been determined and standards for assay performance have not yet been established. The use of multiple testing methodologies may be required because of the biology of the viruses, such as transient viremia and relatively low-immune response observed in the Macaque model. In order to avoid false-positive detection, mouse DNA contamination should be carefully examined and excluded.

 

Source:

http://doi.org/10.1155/2011/281425

 

0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments