Research Article: The Elusive Baseline of Marine Disease: Are Diseases in Ocean Ecosystems Increasing?

Date Published: April 13, 2004

Publisher: Public Library of Science

Author(s): Jessica R Ward, Kevin D Lafferty

Abstract: Disease outbreaks alter the structure and function of marine ecosystems, directly affecting vertebrates (mammals, turtles, fish), invertebrates (corals, crustaceans, echinoderms), and plants (seagrasses). Previous studies suggest a recent increase in marine disease. However, lack of baseline data in most communities prevents a direct test of this hypothesis. We developed a proxy to evaluate a prediction of the increasing disease hypothesis: the proportion of scientific publications reporting disease increased in recent decades. This represents, to our knowledge, the first quantitative use of normalized trends in the literature to investigate an ecological hypothesis. We searched a literature database for reports of parasites and disease (hereafter “disease”) in nine marine taxonomic groups from 1970 to 2001. Reports, normalized for research effort, increased in turtles, corals, mammals, urchins, and molluscs. No significant trends were detected for seagrasses, decapods, or sharks/rays (though disease occurred in these groups). Counter to the prediction, disease reports decreased in fishes. Formulating effective resource management policy requires understanding the basis and timing of marine disease events. Why disease outbreaks increased in some groups but not in others should be a priority for future investigation. The increase in several groups lends urgency to understanding disease dynamics, particularly since few viable options currently exist to mitigate disease in the oceans.

Partial Text: Marine organisms serve as hosts for a diversity of parasites and pathogens. Mortalities affect not only the host population, but can cascade through ecosystems. Loss of biologically engineered habitats such as seagrass beds (Lewis 1933; Taylor 1933) and cascading trophic effects due to removal of consumers (Lessios 1988) can alter community structure.

The largest confounding factor when using literature searches to correlate disease events with time is temporal change in the total number of publications (related to disease or not) on the taxonomic group. To control for changes in total publication, data were normalized using a yearly proportion of disease reports from natural populations relative to total literature inputs for each taxonomic group.

We address an ecological hypothesis, that disease of marine organisms increased since 1970, using a quantitative literature proxy method. Although total reports of marine disease increased over time (Epstein et al. 1998; see Table 1), a parallel increase in publication rates confounds interpretation of this pattern. Our approach normalizes data to overall publication within each group to circumvent this problem.

Source:

http://doi.org/10.1371/journal.pbio.0020120

 

0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments