Research Article: The influence of oxygen and methane on nitrogen fixation in subarctic Sphagnum mosses

Date Published: May 5, 2018

Publisher: Springer Berlin Heidelberg

Author(s): Martine A. R. Kox, Sanni L. Aalto, Timo Penttilä, Katharina F. Ettwig, Mike S. M. Jetten, Maartje A. H. J. van Kessel.

http://doi.org/10.1186/s13568-018-0607-2

Abstract

Biological nitrogen fixation is an important source of bioavailable nitrogen in Sphagnum dominated peatlands. Sphagnum mosses harbor a diverse microbiome including nitrogen-fixing and methane (CH4) oxidizing bacteria. The inhibitory effect of oxygen on microbial nitrogen fixation is documented for many bacteria. However, the role of nitrogen-fixing methanotrophs in nitrogen supply to Sphagnum peat mosses is not well explored. Here, we investigated the role of both oxygen and methane on nitrogen fixation in subarctic Sphagnum peat mosses. Five species of Sphagnum mosses were sampled from two mesotrophic and three oligotrophic sites within the Lakkasuo peatland in Orivesi, central Finland. Mosses were incubated under either ambient or low oxygen conditions in the presence or absence of methane. Stable isotope activity assays revealed considerable nitrogen-fixing and methane-assimilating rates at all sites (1.4 ± 0.2 µmol 15N–N2 g−1 DW day−1 and 12.0 ± 1.1 µmol 13C–CH4 g−1 DW day−1, respectively). Addition of methane did not stimulate incorporation of 15N-nitrogen into biomass, whereas oxygen depletion increased the activity of the nitrogen-fixing community. Analysis of the 16S rRNA genes at the bacterial community level showed a very diverse microbiome that was dominated by Alphaproteobacteria in all sites. Bona fide methane-oxidizing taxa were not very abundant (relative abundance less than 0.1%). Based on our results we conclude that methanotrophs did not contribute significantly to nitrogen fixation in the investigated peatlands.

Partial Text

Biological nitrogen (N2) fixation is of great importance to the Earth’s biosphere as it is the major natural process to replenish biologically available nitrogen. In nutrient-limited ecosystems, the better competitors are often those that find alternative ways to gain their required nutrients, i.e. by engaging in a symbiosis with other organisms (van der Heijden et al. 2008). Peatlands are nutrient-limited ecosystems that have been studied intensively due to their significant role in the global carbon (C) cycle. Approximately 1/3 of the global terrestrial carbon is stored as dead organic matter in peatlands (Gorham 1991). In Sphagnum-dominated peatlands, Sphagnum mosses are the ecosystem engineers. They outcompete vascular plant species in various ways (Malmer et al. 2003), but mainly by creating and maintaining acidic (pH 3–5) and waterlogged conditions. In addition, their own biomass is difficult to degrade, which contributes to the slow decomposition and consequential accumulation of dead organic matter (Clymo 1963, 1964; van Breemen 1995). Peat fens that are mesotrophic or oligotrophic receive N from atmospheric deposition and ground water inflow. Compared to mesotrophic fens, oligotrophic fens receive less nutrients, leading to nutrient limitation and lower productivity (Larmola et al. 2014). In both systems, Sphagnum mosses minimize nutrient availability for vascular plants by rapid and efficient nutrient uptake (Fritz et al. 2014).

This study aimed to elucidate the effect of CH4 and O2 availability on N2 fixation activity in oligotrophic and mesotrophic Sphagnum-dominated peatlands. Biological N2 fixation activity was expected to be stimulated by the presence of CH4 and the absence of O2. For the site effect (oligotrophic vs. mesotrophic), expectations were not so clear-cut, as different confounding factors play a role. Higher availability of N in mesotrophic sites may decrease the demand for biological N2 fixation, while higher P content may lead to relative N scarcity. Also, the better buffering and higher pH of mesotrophic sites may be favorable for N2 fixation.

 

Source:

http://doi.org/10.1186/s13568-018-0607-2

 

Leave a Reply

Your email address will not be published.