Research Article: The Mnn2 Mannosyltransferase Family Modulates Mannoprotein Fibril Length, Immune Recognition and Virulence of Candida albicans

Date Published: April 25, 2013

Publisher: Public Library of Science

Author(s): Rebecca A. Hall, Steven Bates, Megan D. Lenardon, Donna M. MacCallum, Jeanette Wagener, Douglas W. Lowman, Michael D. Kruppa, David L. Williams, Frank C. Odds, Alistair J. P. Brown, Neil A. R. Gow, Marta Feldmesser.

http://doi.org/10.1371/journal.ppat.1003276

Abstract

The fungal cell wall is the first point of interaction between an invading fungal pathogen and the host immune system. The outer layer of the cell wall is comprised of GPI anchored proteins, which are post-translationally modified by both N- and O-linked glycans. These glycans are important pathogen associated molecular patterns (PAMPs) recognised by the innate immune system. Glycan synthesis is mediated by a series of glycosyl transferases, located in the endoplasmic reticulum and Golgi apparatus. Mnn2 is responsible for the addition of the initial α1,2-mannose residue onto the α1,6-mannose backbone, forming the N-mannan outer chain branches. In Candida albicans, the MNN2 gene family is comprised of six members (MNN2, MNN21, MNN22, MNN23, MNN24 and MNN26). Using a series of single, double, triple, quintuple and sextuple mutants, we show, for the first time, that addition of α1,2-mannose is required for stabilisation of the α1,6-mannose backbone and hence regulates mannan fibril length. Sequential deletion of members of the MNN2 gene family resulted in the synthesis of lower molecular weight, less complex and more uniform N-glycans, with the sextuple mutant displaying only un-substituted α1,6-mannose. TEM images confirmed that the sextuple mutant was completely devoid of the outer mannan fibril layer, while deletion of two MNN2 orthologues resulted in short mannan fibrils. These changes in cell wall architecture correlated with decreased proinflammatory cytokine induction from monocytes and a decrease in fungal virulence in two animal models. Therefore, α1,2-mannose of N-mannan is important for both immune recognition and virulence of C. albicans.

Partial Text

Candida albicans is a polymorphic fungus that forms part of the natural human microflora. However, many adverse conditions result in predisposition to oral and vaginal infections and, under circumstances where the host immune system becomes severely compromised as a consequence of malignancy, trauma or chemotherapy, C. albicans can invade underlying epithelial cells and disseminate via the bloodstream and cause systemic disease. The associated mortality rate of systemic disease is approximately 30–40%, which is higher than that observed for many bacterial systemic infections, making C. albicans a major pathogen of the immunocompromised and a significant global health burden [1]–[3].

The fungal cell wall is the first point of contact between the invading pathogen and the host immune system. All the major cell wall carbohydrates have been shown to act as PAMPs that activate and modulate the host’s immune response to the invading pathogen mediated via interactions with specific PRRs [5], [13], [17]–[18], [36]. Previous studies using C. albicans mannosylation mutants have confirmed that both O- and N-mannan structures are important for the recognition of C. albicans by monocytes, macrophages, neutrophils and dendritic cells and established that N-linked mannan was an agonist of the MMP and DC-SIGN [7]–[10], [37]–[39]. However, most PRRs bind short oligosaccharides and the precise carbohydrate epitopes that these PRRs recognise are unknown. Here, we expand on these studies by characterising the role(s) of the α1,2-mannose residues from the N-mannan in immune recognition and fungal virulence through deletion of the C. albicans MNN2 gene family.

 

Source:

http://doi.org/10.1371/journal.ppat.1003276

 

0 0 vote
Article Rating
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments