Research Article: When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math

Date Published: October 31, 2012

Publisher: Public Library of Science

Author(s): Ian M. Lyons, Sian L. Beilock, Georges Chapouthier. http://doi.org/10.1371/journal.pone.0048076

Abstract

Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.

Partial Text

Math can be difficult. For some, even the mere prospect of doing math is harrowing. Those with high levels of mathematics anxiety (HMAs) report feelings of tension, apprehension, and fear of math [1]. HMAs underperform in math relative to their low-math-anxious counterparts [2] and tend to avoid math and math-related situations, which in turn can bias them away from taking math classes or even entire math-related career paths [3]. But what underlies the actual feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena? Or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? Answering these questions is important for determining how to reverse HMAs’ tendency to avoid math-related situations.

All experimental procedures were approved by the University of Chicago Institutional Review Board (protocol 14276A), and all participants gave informed, written consent before participating. Fourteen HMAs and fourteen low math-anxious individuals (LMAs) were identified in a separate prescreening session using the Short Math Anxiety Rating-Scale (SMARS), which measures math anxiety at the trait level. HMAs ranged from above average to very high in math anxiety (range: 38–76, M = 49.56) relative to SMARS published norms (M = 30.34 [17]). LMAs were below average in math anxiety (range: 5–24, M = 15.00). For the SMARS scale, participants are asked to rate how anxious they would be made to feel by 25 math-related situations. Selected examples: ‘Receiving a math textbook’; ‘Walking to math class’; ‘Being given a set of addition problems to solve on paper’; ‘Realizing you have to take a certain number of math classes to meet the requirements for graduation’; ‘Opening a math or statistics book and seeing a page full of problems’.

Because we hypothesized that anticipatory activity would be most strongly related to subjective math anxiety ratings in HMAs, we began by submitting HMAs’ cue βs to a SMARS×2 (Cue: math-cue, word-cue) ANCOVA. A whole-brain map of the interaction term was thresholded at p<.005 (cluster-level corrected at α = .01). This analysis tested for regions showing a significantly different slope in the relation between SMARS and math-cue-activity and the relation between SMARS and word-cue-activity. Four regions – bilateral dorso-posterior insula (INSp), mid-cingulate cortex (MCC), and a dorsal segment of the right central sulcus (CSd) – showed a significant interaction, driven by a positive relation between SMARS and math-cue-activity and a negative relation between SMARS and word-cue-activity (Figure 1; Tables 2 and 3). Cook’s distances were calculated at the ROI level; none was found to exceed the standard cut-off value of 1. The Cook’s distance of one data-point did exceed .5, but removing it did not change the significance of the results. The dorso-posterior insula (INSp) and mid-cingulate cortex (MCC) are implicated in pain perception. Nocioceptive-specific lamina I projections synapse in posterior-ventromedial thalamus (VMpo [25], [26]), and outputs from VMpo terminate in mid-posterior dorsal INS [4]. Direct stimulation of INSp in humans yields pain responses [27]. Neuroimaging evidence in humans supports somatotopically organized contralateral responses to pain-stimulation in INSp [10], [28], [29], [30]. In a recent case study, seizures likely emanating from a dysplasia in right INSp propagated to other pain-related areas (including MCC) and were associated with strong left-lateralized pain sensation; direct stimulation of only INSp generated pain responses akin to those experienced during spontaneous seizure attacks [31]. Mid-posterior INS functionally [32] and anatomically [33] connects with dorsal MCC. Interestingly, MCC in our study showed stronger connectivity with INSp (bilaterally) for cue-activity relative to task-activity (left: z = 3.05, p = .002; right: z = 2.95, p = .003). In sum, high levels of math anxiety predict increased pain-related activity during anticipation of doing math, but not during math performance itself. Source: http://doi.org/10.1371/journal.pone.0048076