The Biology of Emotions

Advertisements
Advertisements

Related Posts:


An illustration of the brain labels the locations of the “thalamus,” “hypothalamus,” “amygdala,” and “hippocampus.”
Figure 1. The limbic system, which includes the hypothalamus, thalamus, amygdala, and the hippocampus, is involved in mediating emotional response and memory. Source: OpenStax Psychology 2e

The Biology of Emotions (OpenStax Psychology 2e)

The limbic system is the area of the brain involved in emotion and memory (Figure 1). The limbic system includes the hypothalamus, thalamus, amygdala, and the hippocampus. The hypothalamus plays a role in the activation of the sympathetic nervous system that is a part of any given emotional reaction. The thalamus serves as a sensory relay center whose neurons project to both the amygdala and the higher cortical regions for further processing. The amygdala plays a role in processing emotional information and sending that information on (Fossati, 2012).The hippocampus integrates emotional experience with cognition (Femenía, Gómez-Galán, Lindskog, & Magara, 2012).

Amygdala

The amygdala has received a great deal of attention from researchers interested in understanding the biological basis for emotions, especially fear and anxiety (Blackford & Pine, 2012; Goosens & Maren, 2002; Maren, Phan, & Liberzon, 2013). The amygdala is composed of various subnuclei, including the basolateral complex and the central nucleus (Figure 2). The basolateral complex has dense connections with a variety of sensory areas of the brain. It is critical for classical conditioning and for attaching emotional value to learning processes and memory. The central nucleus plays a role in attention, and it has connections with the hypothalamus and various brainstem areas to regulate the autonomic nervous and endocrine systems’ activity (Pessoa, 2010).

An illustration of the brain labels the locations of the “basolateral complex” and “central nucleus” within the “amygdala.”
Figure 2. The anatomy of the basolateral complex and central nucleus of the amygdala are illustrated in this diagram. Source: OpenStax Psychology 2e

Animal research has demonstrated that there is increased activation of the amygdala in rat pups that have odor cues paired with electrical shock when their mother is absent. This leads to an aversion to the odor cue that suggests the rats learned to fear the odor cue. Interestingly, when the mother was present, the rats actually showed a preference for the odor cue despite its association with an electrical shock. This preference was associated with no increases in amygdala activation. This suggests a differential effect on the amygdala by the context (the presence or absence of the mother) determined whether the pups learned to fear the odor or to be attracted to it (Moriceau & Sullivan, 2006).

Raineki, Cortés, Belnoue, and Sullivan (2012) demonstrated that, in rats, negative early life experiences could alter the function of the amygdala and result in adolescent patterns of behavior that mimic human mood disorders. In this study, rat pups received either abusive or normal treatment during postnatal days 8–12. There were two forms of abusive treatment. The first form of abusive treatment had an insufficient bedding condition. The mother rat had insufficient bedding material in her cage to build a proper nest that resulted in her spending more time away from her pups trying to construct a nest and less times nursing her pups. The second form of abusive treatment had an associative learning task that involved pairing odors and an electrical stimulus in the absence of the mother, as described above. The control group was in a cage with sufficient bedding and was left undisturbed with their mothers during the same time period. The rat pups that experienced abuse were much more likely to exhibit depressive-like symptoms during adolescence when compared to controls. These depressive-like behaviors were associated with increased activation of the amygdala.

Human research also suggests a relationship between the amygdala and psychological disorders of mood or anxiety. Changes in amygdala structure and function have been demonstrated in adolescents who are either at-risk or have been diagnosed with various mood and/or anxiety disorders (Miguel-Hidalgo, 2013; Qin et al., 2013). It has also been suggested that functional differences in the amygdala could serve as a biomarker to differentiate individuals suffering from bipolar disorder from those suffering from major depressive disorder (Fournier, Keener, Almeida, Kronhaus, & Phillips, 2013).

Hippocampus

As mentioned earlier, the hippocampus is also involved in emotional processing. Like the amygdala, research has demonstrated that hippocampal structure and function are linked to a variety of mood and anxiety disorders. Individuals suffering from posttraumatic stress disorder (PTSD) show marked reductions in the volume of several parts of the hippocampus, which may result from decreased levels of neurogenesis and dendritic branching (the generation of new neurons and the generation of new dendrites in existing neurons, respectively) (Wang et al., 2010). While it is impossible to make a causal claim with correlational research like this, studies have demonstrated behavioral improvements and hippocampal volume increases following either pharmacological or cognitive-behavioral therapy in individuals suffering from PTSD (Bremner & Vermetten, 2004; Levy-Gigi, Szabó, Kelemen, & Kéri, 2013).

Source:

Spielman, R. M., Jenkins, W. J., & Lovett, M. D. (2020). Psychology 2e. OpenStax. Houston, Texas. Accessed for free at https://openstax.org/details/books/psychology-2e

Advertisements
Advertisements

Related Research

Research Article: Emotions in Everyday Life

Date Published: December 23, 2015 Publisher: Public Library of Science Author(s): Debra Trampe, Jordi Quoidbach, Maxime Taquet, Alessio Avenanti. http://doi.org/10.1371/journal.pone.0145450 Abstract: Despite decades of research establishing the causes and consequences of emotions in the laboratory, we know surprisingly little about emotions in everyday life. We developed a smartphone application that monitored real-time emotions of an … Continue reading

Research Article: Mixed Emotions and Coping: The Benefits of Secondary Emotions

Date Published: August 1, 2014 Publisher: Public Library of Science Author(s): Anna Braniecka, Ewa Trzebińska, Aneta Dowgiert, Agata Wytykowska, Antonio Verdejo García. http://doi.org/10.1371/journal.pone.0103940 Abstract: The existing empirical literature suggests that during difficult situations, the concurrent experience of positive and negative affects may be ideal for ensuring successful adaptation and well-being. However, different patterns of mixed … Continue reading

Research Article: The regulation of emotions in adolescents: Age differences and emotion-specific patterns

Date Published: June 7, 2018 Publisher: Public Library of Science Author(s): Anne Theurel, Edouard Gentaz, Jiajin Yuan. http://doi.org/10.1371/journal.pone.0195501 Abstract: Two experiments addressed the issue of age-related differences and emotion-specific patterns in emotion regulation during adolescence. Experiment 1 examined emotion-specific patterns in the effectiveness of reappraisal and distraction strategies in 14-year-old adolescents (N = 50). Adolescents … Continue reading